
AD-A195 269 LOGIC CAMC A DESIGN TOOL FOR DIGITAL SYSTENS(U) AIR 1/2
FORCE INST OF TECH URIGHT-PATTERSON RFD OH
G D ROSENBERGER RUG 67 RFIT/Cl/NR-67-55T

UUNCL SSE F/G1 2/5 L

EEEmhhEEshmhhI

lUi~~.r V _

U,.

C - -'

SECURITrY CLASSIFICATION OF THIS PAGE (When Date Entered), __

REPORT DOCUMENTATION PACE REAl) INSTRUCTIONS
UEFORE COMIL'FING, FO~LRMh

.REPORT $&IImnER 2. GOVT ACCESSION No. 3. R N CALGWMDEn

0 AFIT/CI/NR 87- 55T • • UEFO5) ZT;)

4. TITLE (and Sebtitle) S. TYPE OF REPORT & PERIOD COVERED

Logic Calc: A Design Tool For Digital Systems THESIS WiAMM A

I!6. PERFORMING G. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s)

MGlenn David Rosenberger
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AFIT STUDENT AT:
AREA a WORK UNIT NUMBERS

00 University of Texas
N

* CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

*n AFIT/NR August 1987
0, WPAFB OIl 45433-6583 13. NUMBER OF PAGES

r0 131
MONITORING AGENCY NAME A ADDRESS(It different Irom Controlling Office) IS. SECURITY CLASS. (of thin report)

UNCLASSIFIED
ISa. DECL ASSI FICATION, OOWNGRAOING

SCHEDULE

DISTRIBUTION STATEMENT (of this Report) 0...

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D T ICELECTE

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES -, a

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 WOLAVER
Dean for Research an16
Professional Development

AFIT/NR
IS. KEY WORDS (Continue on reverse side It necoeeary and identify by block number)

20. ABSTRACT (Continue on reverse side It necesary and Identify by block number)

ATTACIIEI)

FORM4

DOD JAN73 1473 EDITION OF INOV IS IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE ("lhen Data Fntered)87 70 14 270

M-IL-K ..?X~jALAXAW

LOGIC CALC: A DESIGN TOOL FOR DIGITAL SYSTEMS

by

GLENN DAVID ROSENBERGER, BSEE

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

M4ASTER OF SCIENCE IN ENGINEERING

Accesion For

NTIS C&

DTIC TAE3

THE UNIVERSITY OF TEXAS AT AUSTIN JUStflmctiol

August 1987 By. ..

Avaqf-!big~ty COdes.

Dist v lpo.

LOGIC CALC: A DESIGN TOOL FOR DIGITAL SYSTEMS

APPROVED:

* DEDICATION

To my Lord.

ACINOWLEDGENTS

I vould like to express my deep appreciation for
Professor Harvey Cragon for his sincere concern in my research
efforts and for his guidance in the preparation of this thesis. I
would also like to thank Doctor Gary Cobb for reading and making
valuable, detailed suggestions to this thesis. I thank all the
teachers at the University of Texas for their efforts to broaden
my horizons. Lastly, I would like to thank my entire family for
their love and support.

July 15, 1987

iv

L M),

TABLE OF CONTENTS

1. introduction 1

2. Data Structure 6
2.1 Spreadsheets and Object-Oriented Programing . 6
2.1.1 Data Encapsulation. 6
2.1.2 Special Purpose Procedure Encapsulation. 7
2.1.3 Implementation of an Object-Oriented

Programing Language 8
2.2 Lotus 1-2-3 Data Structure. 9
2.2.1 Memory Allocation of Individual

Lotus 1-2-3 Cells 10
2.2.2 External Representation of a Lotus 1-2-3 Cell . 14
2.2.3 Internal Representation of a Lotus 1-2-3 Cell . 14
2.2.3.1 NullColl 16
2.2.3.2 ASCII String Cell. 16
2.2.3.3 Fixed-Point Cell 19
2.2.3.4 Floating-Point Cell. 19
2.2.3.5 Formula Cell 19
2.3 Logic Cale Data Structure. 24
2.3.1 Logic Cale Spreadsheet Cell Description. 25
2.3.2 Logic Cale Spreadsheet Column Description 29
2.4 Logic Calc Formula Cells 29
2.4.1 The *Cell" Function 30
2.4.2 Indirection Through Recursion of the

"Call" Function 31
2.4.3 Indirection Through 'Coll-Indirect". 31
2.4.4 The "Cell-Offset" Function 32
2.4.5 The "Dual-Rank-Register* Function 33
2.4.6 Boolean Operations In Cell Formulas 33

3. Logic Cale Program Development and Operation . .. 36
3.1 Programing Environment. 36
3.1.1 Window Capabilities and Mouse Sensitivity ... 36
3.1.2 Incremental Compilation and Evaluation. 38
3.1.3 Debugging Capabilities 39
3.2 Logic Calc Operation 40
3.2.1 Logic Cale Initialization and Termination ... 40
3.2.2 Spreadsheet Size 40
3.2.3 File Operations.41
3.2.4 Go-To Operations. 42
3.2.5 Manual Spreadsheet Recalculations 42
3.2.6 Spreadsheet Editing Operations 43
3.2.6.1 Cell View............ 4

v

3.2.6.2 Cll Edit 45
3.2.6.3 Cell Sit Size. 45
3.2.6.4 Coll Output Display45
3.2.6.5 Cell Move and Cell Copy. 46
3.2.6.6 Coll Eras. 46
3.2.6.7 Column and Raw Editing 46
3.2.6.8 Column Width Settings. 46
3.2.7 Automatic Simulation 47
3.2.7.1 The "Print-Spreadsheet" Function 48
3.2.7.2 The "Cale' Function. 49
3.2.7.3 The Load-Cell Function 49
3.2.7.4 The l~estart" Function 49
3.2.7.5 User-Defined Functions 50

4. Digital System Simulation vith Logic Calc . . 51
4.1 Logic Calc Simulation of Parallel Operations . .. 51
4.1.1 Solution to the Recalculation Problem 54
4.1.2 Implementation of the Recalculation Solution . .. 55
4.2 Circular References. 56
4.3 Non-Converging Circuits. 56
4.4 Clocking of a Digital System 61
4.5 Registers 66

5. Demonstration of Logic Calc's Capabilities 71
5.1 Design of the Microprocessor 71
5.1.1 Preliminary Steps. 72
5.1.2 Construction of Individual Components 77
5.1.2.1 Example Digital Component: The Program

Counter. 78
5.1.2.2 Example Digital Component: The internal

Data Bus.79
5.1.3 Writing Microcode. 81
5.1.4 The Microcontroller..............................82
5.2 Final Testing of the Microprocessor 83

6. Conclusion....................87
6.1 Summary of Results 87
6.2 Future Research.89

Appendix 1 93

Appendix 2. 124

Bibliography. 129

Vita. 131

Vi

INTRODUCTION

The object of this thesis is to develop a engineering-

oriented spreadsheet that is capable of being used as a design

tool for digital systems.

The design methodology of fully testing and validating a

digital system at each level of abstraction before passing it on

to lover levels is essential to ensure that no design flaws are

passed on to the lower levels. There are several tools available

to the designer for simulation of digital logic, but the tools to

design and simulate a digital system at the architectural level,

the highest level of design, are both limited in productivity and

not easy to use. The architectural level needs a highly prod-

uctive design tool to completely validate the architecture before

pursuing the expensive lover levels of design. If the design tool

is relatively simple to use, this validation process can be

rapidly accomplished.

At the initial stages of design of a digital system,

stages in which many changes are usually made, an ideal design

tool would be interactive, flexible, highly visible, and self-

documenting. Traditional design tools, such as Instruction Set

Processor (ISP) and Register Transfer Level (RTL) languages, lack

these characteristics. Spreadsheet programs, such as

1

2

Lotus 1-2-3*, have these characteristics, and have been proven to

have the capability to simulate digital systems [4, 8, 11, 133.

Each cell within a spreadsheet can simulate fundamental components

within a digital system (Figure 1). The cell's formula is used to

describe the operation of the component. The spreadsheet offers

an interactive means of editing cells through use of cursor

positioning and menu selection techniques. Text entries may be

made in other cells, aiding documentation. The cell's value,

displayed on the screen, depicts the output state of the component

in a highly visible manner. Because a spreadsheet cell can

simulate computer "black boxes" at various levels of abstraction,

a high degree of flexibility is offered with such a design tool.

1--Financial spreadsheets, such as Lotus 1-2-3 are widely

available, but they have several drawbacks when used as digital

design tools. These drawbacks stem from the design of such

spreadsheets as financial tools rather than engineering tools.

The primary shortcomings of financial spreadsheet programs are:

1. A maximum value for fixed-point integers. Financial
spreadsheets typically do not allow fixed-point
integers to be greater thrn preset limits. If
integers become too large in a financial
spreadsheet, they are automatically converted to
floating-point numbers. In a digital system,
however, many components, such as microstore, hold
binary integer values in excess of financial
spreadsheet's maximum integer value. When used to

Lotus 1-2-3 is a registered trademark of the
Lotus Development Corporation

3

A B C D

1 INPUT A INPUT B INPUT C

2 3241 5317 2168

3

4 CONTROL

5 1

6 Cell A7 Provides
Documentation

7 CSELECTOR

8 (5317 Display Shows Output
of Simulated Component

9r

Internal Cell Formula Describes Function
of Simulated Component:

If A5=0 Then A2
Else If A5=1 Then B2

Else If A5=2 Then C2

Figure 1. Spreadsheet Cell A8 Functioning as a Digital Selector

4

simulate such digital components, floating-point
numbers are not acceptable due to a lack of
precision.

2. Fixed size integers. Digital hardware is of various
bit lengths. A flag register may consist of only a
single bit, whereas microstore may consist of hun-
dreds of bits. In simulation of digital systems,
financial spreadsheets digital lack an ability to
correctly specify the operations of hardware of
various sizes because all cells have the same bit
length in a financial spreadsheet.

3. Lack of Boolean operations. Boolean logic is the
heart of all digital systems. In a financial
spreadsheet, Boolean operations can only be
accomplished with complicated if-then constructs.
This method of simulating Boolean operations is
cumbersome and error-prone.

4. Lack of binary and hexidecimal display. Interpreting
decimal values in a binary system Is also very
cumbersome and error-prone.

5. Inability to simulate some key digital components in
a single cell. To simulate some digital units, a
financial spreadsheet requires several cells,
cluttering the display.

6. Slow and cumbersome programmatic operation of the
spreadsheet. Lotus offers "macros" to drive a
spreadsheet, but these macros have an unusual syntax
and are therefore difficult to write. Also, they are
interpreted rather than compiled; therefore, their
execution speed is slow.

7. No modification capabilities. The uncompiled, high-
level-language source code is unavailable for most
financial spreadsheets, making it difficult to modify
the spreadsheet for specific applications.

"'An engineering spreadsheet, Logic Calc was developed with

the goal to eliminate these shortcomings. A comparison of its

data structure with the Lotus 1-2-3 data structure is presented in

Section 2. The design and operation of this spreadsheet is

presented in Section 3. Digital system simulation with Logic Calc

is discussed in detail in Section 4. To illustrate the

capabilities of Logic Calc as a digital design tool, a simple

microprocessor was designed using it. The techniques for this

simulation are presented in Section 5. Conclusions and

suggestions for future research in this area are stated in

Section 6.

-R.N_7 1 il

DATA STRUCTURE

2.1 SPREADSHEETS AND OBJECT-ORIENTED PROGRAMMING

Basically, a spreadsheet is a two-dimensional array of a

data object called a "cell." An individual, unique cell can be

referenced through use of the array indexes, typically called

"rows" and "columns." Each cell has specific properties including

a type, value, display characteristics, and possibly a formula

used to derive its value from its relationships with data and

other cells within the spreadsheet. The power in a spreadsheet is

two-fold:

1. It has an ability to change and recalculate the
values of every cell whenever changes are made to the
data or the cell formulas.

2. It provides an interactive environment for editing

data and cell formulas.

These two features allow rapid "what if?" analysis of a wide

variety of problems. The array format of a spreadsheet provides

.both a structure for numeric data for easy recalculation and a

format for displaying the data and calculations [11].

2.1.1 DATA ENCAPSULATION

These fundamental aspects of a spreadsheet blend well

with object-oriented programming. Construction of a spreadsheet

through use of an object-oriented programming language allows use

6

7

of data abstraction to fully encapsulate the properties of the

spreadsheet cell [16). Data abstraction frees programmers from the

details of the representation of the cell properties by hiding the

details of lower-level data storage, modification, and retrieval

primitives. Working on this higher level is accomplished by

providing a collection of access procedures termed "data

constructors," "data selectors," and "data mutators." Data

constructors can be used to make a spreadsheet cell, data

selectors can get information from the cell's property list, and

mutators can change cell properties. Object-oriented programming

also allows manipulation of data objects as a whole; therefore,

spreadsheet cells can be created, moved, copied, or deleted as

whole objects 116].

2.1.2 SPECIAL PURPOSE PROCEDURE ENCAPSULATION

Object-oriented programming also offers the encapsulation

of special purpose procedures that operate on various properties

of the object to reside within the property list of that object

type [16]. This allows the programmer to use a general purpose

procedure call on a variety of different types of object - the

object itself invokes the special purpose procedure. A common

example of this aspect of object-oriented programming can be given

by defining two types of data objects: fixed-point numbers and

floating-point numbers. The general purpose procedure call might

be "Add". Since fixed-point addition differs from floating-point

8

addition, fixed-point data object types should have a special

purpose fixed-point addition procedure listed under the *Add"

entry of their property list while floating-point object types

should have a special purpose floating-point addition procedure

under their *Add" entry. The programmer can then invoke an OAdd"

procedure on an object of either type without consideration to its

type. Similarly, a powerful spreadsheet can be developed by

providing different type of cells: empty, constant, text and

formula. Object-oriented programming allows general purpose

operations on cells within a spreadsheet to be invoked without

regard to the type of cell. The cell responds appropriately to the

general purpose operation, selecting the special purpose operation

according to its type. Thus, this aspect of an object-oriented

programming language simplifies the development of the spreadsheet

program by eliminating general purpose dispatch procedures that

must determine the type of spreadsheet cell before issuing a

special purpose procedure call [16].

2.1.3 IMPLEMENTATION OF AN OBJECT-ORIENTED PROGRAMMING LANGUAGE

The implementation. of an object-oriented program

generally involves a pointer-based access to the data structure.

Several complex operations on data objects can be reduced to

simple pointer manipulation with this type of access to the data

structure. Associated with the pointer-based implementation is a

9

garbage collector which is used to recover the fragmented memory

space that arises with the pointer-based access methods. Although

a pointer-based implementation may slow computations on simple

data objects, operations on complex data objects are easier to

implement and may offer a performance advantage [16]. The

pointer-based access to the data structure and the garbage

collector of the popular Lotus 1-2-3 spreadsheet program is

examined in the next subsection.

2.2 LOTUS 1-2-3 DATA STRUCTURE

A study of the Lotus 1-2-3 data structure was

accomplished to reveal the operating principles and data

encapsulation of the spreadsheet cells. This study was

accomplished by temporarily exiting a Lotus session on an IBM PC

AT through use of the /System command (Version 2.0 only). The

current spreadsheet's data structure was left intact through this

method, and it was examined with use of the MS-DOS debugger. The

lessons learned from this study of Lotus 1-2-3 were used in the

development of Logic Calc. While not a pure object-oriented

program, certain aspects of the Lotus 1-2-3 data structure enable

one to view the Lotus 1-2-3 spreadsheet program as a primitive

form of object-oriented programming.

..... , ~~~ , f . ~

10

2.2.1 MEMORY ALLOCATION OF INDIVIDUAL LOTUS 1-2-3 CELLS

Like most spreadsheets, the Lotus spreadsheet is

comprised of & two-dimensional array of cells. Columns of the

spreadsheet are indexed with letters and rows are indexed with

numbers [10]. Generally, Lotus allocates contiguous space in

memory from the first active cell (a cell which is not empty) in

each column to the last active cell in that same column. This can

best be illustrated graphically. Figure 2 shows a portion of a

Lotus 1-2-3 spreadsheet in which the active cells are marked by a

shaded box. In this example, contiguous space in memory will be

used to represent the cells outlined in Figure 3. Garbage

collection of this portion of memory is invoked when cells are

added or deleted in a column so as to change the row number of the

first or last active call in that column. In the preceding

example, if cell D5 were erased, garbage collection would be

invoked to reclaim the space allocated for cells D3, D4, and D5.

Each cell in the Lotus 1-2-3 spreadsheet may be viewed as

a data object. A cell consists of both an internal value and a

specification for displaying that value to the external world. A

cell is described by four bytes (Figure 4). The first two bytes

and the high order four bits of the fourth byte describe the

internal properties of the cell. The third byte is used both to

specify the cell's external representation and to identify the

cell's protection property (ability of the user to edit the cell).

A B C D E

2W~

3EJ ~

8

9

10

Figure 2. Active Cells in an Example Lotus 1-2-3 Spreadsheet

12

A B C D E
L* *e*SS*eS S SeSL * e°s sSI

-,* -oo * - -,:g..... .

3: -

7 7

10

Figure 3. Cells from Figure 2 that are Given Space
in Memory by Lotus 1-2-3

13

A Lotus Cell Consists of Four Bytes

External Representation

Internal Properties

Figure 4. Lotus 1-2-3 Spreadsheet Cell

14

The low order four bits of the last byte identify the type of cell

of which there are five possibilities: empty cell, ASCII string

cell, fixed-point cell, floating-point cell, and formula mil.

2.2.2 EXTERNAL REPRESENTATION OF A LOTUS 1-2-3 CELL

The external representation and protection byte for each

cell specifies how the internal value of the cell is displayed to

the user. Seven bits are used to describe this external

representation. An eighth bit is used as a cell protection flag.

If both a separate global protection flag and this cell protection

flag are set, editing operations on this cell are disallowed.

With bit 7 as the high bit, Table 1 lists the possible values of

the external representation and protection byte [15]. From this

table, an example hex value of u93" would identify the cell's

protection flag to be set and that its internal value is to be

displayed in scientific notation format with three decimal places

displayed.

2.2.3 INTERNAL REPRESENTATION OF A LOTUS 1-2-3 CELL

Lotus stores the internal value of a cell in various

ways, depending on the type of cell. Null and fixed-point cells

contain immediate, fixed-point internal values. Floating-point

cells and formula cells utilize a pointer to obtain an IEEE

standard floating-point value. String cells utilize a pointer to

15

Sl!iVa Dc...ion

7 Call Protection 0 Unprotected
1 Protected

6,5,4 Format type 000 Fixed Point
001 Scientific Notation
010 Currency
011 Percent
100 Coma
111 Special

3,2,1,0 If the format type is 0000 to
000 - 100, these bits 1111
are the number of dec-
imal places displayed.

If the format type is 0000 +/-
111 0001 General format

0010 Day-Month-Year
0011 Day-Month
0100 Month-Year
0101 Text
lll Default

Table 1. Cell Format Byte

I,

16

obtain an ASCII string. Each of these cells is described

separately in the following subsections.

2.2.3.1 NULL CELL

The first type of cell to be described is the null cell.

Although the user has made no entry for this cell, it exists

because of the memory allocation rule discussed in Section 2.2.1.

It has a value of zero, but its value is not displayed. Rather,

blanks are displayed at its location. Figure 5 shows the

specification of the four bytes that describe a null cell.

2.2.3.2 ASCII STRING CELL

Figure 6 depicts the ASCII string cell, which

corresponds to the cells identified as "labels" by Lotus 110).

The internal value of this type of cell for computational purposes

is zero, but for string operations, it can be found by the use of

a pointer to a buffer of ASCII strings for all string cells within

the spreadsheet. This ASCII string has a length variable from 1

to 240 bytes and is terminated with a byte of zero [15]. Garbage

collection tags are used to recover space created by editing

existing string cells. This garbage collector simply allows space

to be reused if possible, but does not compact the buffer.

Internal fragmentation of this buffer may therefore occur, but

fragmented space can be recovered by writing the spreadsheet to

disk and reading it back into memory.

6M =. .- %

17

x xx xx x x xo0

Figure 5. Lotus Null Cell

JR - - .. V

x x x x x x x 1

20 BrT POWNER

-0 G.C. TAGS x x x x

x x x x x x x x

Located in XX XX x x x
Label Segment - __

of Memory0

Figure 6. Lotus Label Cell

kAA %.f%%A A *.a A.

19

2.2.3.3 FIXED-POINT CELL

A much simpler cell is the fixed-point cell depicted in

Figure 7. The internal value of a fixed-point cell is expressed

as a constant two's complement integer. With 16 bits, constant

decimal integer values from -32768 to 32767 can be represented by

a fixed-point cell.

2.2.3.4 FLOATING-POINT CELL

If an internal value cannot be represented by a fixed-

point cell, a floating-point cell, as shown by Figure 8, is

automatically created. The internal representation bits form a

pointer to a table of 64-bit IEEE standard floating-point numbers

[1]. IEEE floating-point not-a-numbers are used to give the value

"Error" or "NA" to a cell [1, 10]. Should a floating-point cell

be edited so that its type is no longer a floating-point cell, a

vacancy in the table will exist. This vacancy is marked with yet

another IEEE floating-point not-a-number. This vacancy can be

detected when creating a new floating-point cell, and the memory

space reclaimed.

2.2.3.5 FORMULA CELL

The most interesting type of cell is the formula cell

depicted by Figure 9. A formula cell is a type of cell that

contains an internal value that is the result of the computation

of its internally stored formula. This computation may have other

20

lx jX x xi X 2

2 BYTE INTEGER
(IMMEDIATE OPERAND)

Figure 7. Lotus Fixed Point Cell

I

21

Ixx x x xxx X
20 BIT POINTER

-08 BYTE EEEE STANDARD FLT. PT.

Located in
Floating Point
Segment of
Memory

Figure 8. Lotus Floating Point Cell

!

22

XXXX XX X4

20 BIT POINTR

G.C. TAGS VALVE
(2 BYTES) (8 BYTE IEEE STANDARD FLT. PT.)

IMENCIrH FORWARD I3NK BACKWARD LINK
(2 BYTES) (3 BYTES) (3 BYTES)

Located in RECALC X LCATION YLOCATION
Formula BYrE (I BYTE) (2 BYTES)
Segment of I
MeoyORMULA -REVERSE POLISH STRING

(VARIABLE [DIIGII)

03

Figure 9. Lotus Formula Cell

23

cell values as its parameters. Here, the internal representation

bits form a pointer to a buffer of various length entries that

represent each formula cell. There are several items encapsulated

in each entry of the formula buffer:

1. Garbage collection tags. Garbage collection is
accomplished by reusing space in the same manner as
for label cells.

2. Value. The same IEEE floating-point format of
floating-point cells is used to represent the
computed internal value of a formula cell.

3. Length of entry. These two bytes specify how many
bytes are used to represent the formula. This value
is useful when copying the cell to another location
by specifying the number of bytes to be copied to
another buffer entry.

4. Links. Two three-byte pointers link all formula
cells together in a bidirectional manner. The
formula cells are linked in the chronological order
in which they were entered into the spreaduheet. The
links facilitate spreadsheet recalculation. Lotus
does not have to examine every cell to determine
whether it is a fornula cell during spreadsheet
recalculation. Rather, it can stop through all
formula cells with use of this linked formula list.
A double link is established so as to allow the
arbitrary removal of an entry in the formula buffer.
If a formula cell is edited so that its type is no
longer a formula cell, the links of the two cells
that point to it must be updated. A formula cell
knows which cells are pointing to itself by
examination of its own links.

5. Recalculation flag. A single byte is used as a flag
during spreadsheet recalculation. During spreadsheet
recalculation, this flag is initially cleared for all
cells. Because formula cells may be evaluated out of
sequence due to references of other cells, this flag
is set to mark those cells that have been evaluated
during the spreadsheet recalculation. Subsequent
references to a marked formula cell during a
spreadsheet recalculation need not evaluate its

.. ,-e c-.ee

24

formula. The net result is that each formula cell is
evaluated only once during spreadsheet recalculation.
The recalculation flag is also used to detect and
correctly evaluate circular references during
spreadsheet recalculation. Spreadsheet recalculation
and circular references are discussed further in
Section 4.

6. Location. The following three bytes identify the
cell's location, one for the column, and two bytes
for the row. A cell needs to know its location in
the spreadsheet to enable it to utilize the relative
cell addressing offered by Lotus [10].

7. Formula. The internal specification of the formula
follows. This entry has a length variable from 2 to
2064 bytes [15]. In Lotus 1-2-3, a cell formula is
both written by the user and displayed to the user in
a infix notation with syntax and semantics unique to
Lotus 1-2-3. When storing the formula, however, the
Lotus 1-2-3 program converts the formula into a more
compact representation using a reverse-Polish
(postfix) notation that is terminated with a formula
opcode of 0030. A lengthy list of operations exist,
giving Lotus the ability to compute scientific,
financial, and database statistical functions. A
cell may be a parameter in a cell formula and it may
be specified either absolutely or relatively. Each
time a formula cell is highlighted by the user for
viewing, the Lotus 1-2-3 program reconstructs and
displays the infix version of the formula. The
internal representation of formula opcodes in memory
is somewhat different than the representation when
the spreadsheet is stored on disk, but publishings of
disk formats can be used to unassemble cell formulas
[15).

2.3 LOGIC CALC DATA STRUCTURE

The data structure of Logic Calc was patterned after that

of Lotus 1-2-3. The differences center around the fact that Logic

Calc is designed to be used as a digital design tool rather than a

financial spreadsheet. Logic Calc was written in Common Lisp, a

25

popular object-oriented programming language used in artificial

intelligence applications [5, 12, 161.

The spreadsheet indexes of the two spreadsheets are

identical: columns are referenced by letters and rows are

referenced by numbers. Logic Calc goes a step further, however,

by offering a variable size spreadsheet array. This gives the

design engineer the opportunity to tailor the size of the

spreadsheet to a specific problem. A smaller spreadsheet will use

less space in memory. This mans that garbage collection will

occur less frequently resulting in faster simulations. A large

spreadsheet, however, may be necessary to simulate digital systems

with many components.

2.3.1 LOGIC CALC SPREADSHEET CELL DESCRIPTION

The spreadsheet cells of Logic Calc are data objects

defined by the use of Comon Lisp flavors [5, 16]. While Lotus 1-

2-3 has several types of data objects with different property

lists, each cell within the Logic Calc spreadsheet is of the same

type (identical property lists), but a value of an item of the

cell's property list distinguishes the type of cell. (Figure 10)

The single type of Logic Calc spreadsheet cell is patterned after

the formula cell of Lotus 1-2-3: it has an Internal

representation in the form of a formula and a value, it has an

external representation showing the output state of the cell, and

it contains a recalculation flag to permit proper spreadsheet

26

-L Type

Value

w Formula

Recalc Flag

0Bits
._ Output

Display
h_ hanged

Value Flag

Figure 10. Logic Calc Cell

j / P P ~ ~

27

recalculation. Unlike Lotus 1-2-3, the Logic Calc cells are not

linked together. Rather. a list of formula cells is maintained as

a global list. Also. Logic Cale has two properties not found in a

Lotus 1-2-3 cell: a bits property that allows the spreadsheet to

more closely represent digital components of various lengths and a

changed-value property that speeds up redisplay of a spreadsheet

following a recalculation. The following is a list of the Logic

Calc cell properties:

1. Type. The four types of cell objects are a null
cell, which has a zero value but is displayed as
blank characters; a constant cell, which has a
constant integer value; a string cell, which has a
constant ASCII string value; and a formula cell,
which has either an ASCII string value, a constant
value, a T (true) value, or a nil value (as defined
by Lisp). The formula cell also contains a Lisp
expression used to calculate the value. All cells
are initially null cells, but change as the user
edits the sprea'sheet.

2. Value. As mentioned above, this property of the
spreadsheet can be either an integer, an ASCII
string, T, or nil, depending upon the type of cell.
This value is displayed on the spreadsheet window in
a format specified by the output-display property.
If the cell is not a formula type, this value is
constant. If the cell is a formula, this value is
the result of the spreadsheet recalculation method
described in Section 4.

3. Formula. Although all cells contain this property,
only formula cells make use of it. This property is
a Lisp form that Is evaluated upon each spreadsheet
recalculation to determine the cell's value. Unlike
Lotus 1-2-3, formulas in Logic Calc are stored
exactly how they are written and displayed: as a Lisp
form. This Lisp form utilizes a prefix notation
which is easy to read and evaluate. For example, the
infix formula of 0(3+5)/20 would be written in prefix

PW 17'- %.~

28

form as (/ (+ 3 5) 2). This property is discussed
further in the Section 2.4.

4. Recalculation flag. Again, only formula cells make
use of this property. This flag is used to ensure
that each cell is evaluated only once during
spreadsheet recalculation in a manner similar to that
employed in Lotus 1-2-3. Logic Cale recalculation
methods and circular reference capabilities are
described in Section 4.

5. Bits. This is a property that is unique to the Logic
Calc spreadsheet when compared to other spreadsheets,
and it stem from the design goal of making Logic
Calc a design tool for digital systems. The bits
property, set by the user or defaulted to 32, alloys
a cell to closely simulate a digital component by
providing a specification for the number of bits of
the component. Cells which have integer values are
restricted to a value that can be specified with the
prescribed number of bits given by the cell's bit
property. Because internal values are adjusted by
this property, negative values show a true two's
complement form of leading l's in the left-most bit
positions and are displayed without a minus sign.
For example a 32-bit cell subtracting four from three
with a formula of (- 3 4) will yield a value of
FFFFFFFF hexidecimal. Overflow of a cell is also
possible due to this property. For example, a three-
bit cell adding two and seven with a formula of
(+ 2 7) will yield a result of 1. This property has
no effect on the cells with ASCII string, true, or
nil values.

6. Output display. This property, set by the user
during spreadsheet editing, determines whether the
value of the cell is displayed in binary or
hexidecimal. This property has no effect on ASCII
string, true, or nil values.

7. Changed value flag. During editing or spreadsheet
recalculation, this flag is set whenever a cell
changes its value. The function UPrint-Spreadsheet-
Changed-Items" rapidly updates the display by
redisplaying only those cells whose value has changed
since the last display update. The redisplay time
can be significantly reduced by this function,
allowing a faster program operation during all facets

m~

29

of spreadsheet programming for digital design
simulation. When the user wishes to view a different
region of the spreadsheet, all values of the
spreadsheet need to be redisplayed. In this case,
Logic Calc uses the function "Print-Spreadsheet"
which is significantly slower than uPrint-
Spreadsheet-Changed-Items." Fortunately, this total
redisplay is usually required only during spreadsheet
editing operations where speed is not critical.

2.3.2 LOGIC CALC SPREADSHEET COLUMN DESCRIPTION

Besides the cell, the other significant data object in

the Logic Calc spreadsheet is the column. This object has three

properties, all of which are used to generate the display:

1. Letter. This property is equal to the one or two
uppercase letters that identify the column index.
This ASCII string is printed as a mouse-sensitive
item whenever the entire spreadsheet is redisplayed.
The user can highlight each column index with the
mouse and select from a menu various column editing
operations.

2. Width. This value, set by the user or defaulted to
20, is the amount of horizontal space on the screen
that the column occupies. This value is measured in
number of characters of the fixed-width font that is
used in the spreadsheet window.

3. Position. This value is used to remember the left
edge of each column. This information must be
maintained in order to rapidly update the display
after editing or recalculated.

2.4 LOGIC CALC FORMULA CELLS

Formula cells form the heart of the spreadsheet - without

them, a spreadsheet would be mrely a data storage and display

device. Because Logic Calc cell formulas are both written and

stored as a Lisp form, a user needs to learn only one syntax to

30

utilize Logic Calc directly or to interface to Logic Calc from

other programs. When used to design digital systems, the Lisp

syntax and semantics prove far more powerful than that used by

Lotus 1-2-3 due to Lisp's straight-forward, unambiguous syntax,

its ease of editing, and its ability to perform operations not

offered by Lotus - specifically, Boolean operations. Also,

because Logic Calc cell formulas are written in the same language

that Logic Calc is written in, the user will find it easy to make

modifications to the Logic Cale source code once he learns how to

write simple cell formulas. Thus, he can easily tailor Logic Calc

to his own needs.

2.4.1 THE "CELL" FUNCTION

A few functions have been provided to reference the

values of other cells within the spreadsheet. These functions

provide the necessary relationships between spreadsheet cells for

the cells to simulate discrete digital components. The most

common is the "Cell" function. Because this is the basic building

block for cell references within the spreadsheet, particular

attention was given to the operating speed of this function when

the source code was developed. There can be only a single

parameter to the cell function - the cell location. An example

best illustrates the use of the cell function. The formula entry

(+ (Cell A2) (Cell A3)) will return a value equal to the sum of

31

the values in cells A2 and A3. The cell function vill accept

either upper or lover case column indexes. If the cell location

does not exist or typographic errors exist in the parameters, this

function returns nil. This type of error will generally cause the

Explorer debugger to be entered because the value nil cannot be

used with integer or string operations. The Explorer debugger

prints out highly informative error messages that will aid the

user in detecting the source of his error.

2.4.2 INDIRECTION THROUGH RECURSION OF THE "CELL" FUNCTION

To simulate digital systems, it was deemed that

indirection would be useful. Any level of indirection is

available through recursion of the cell function. For example, if

the value of cell A6 is the ASCII string "B52", an entry of (Cell

(Cell A6)) would return the value of cell B52.

2.4.3 INDIRECTION THROUGH "CELL-INDIRECT"

An alternate means to obtain a single level of

indirection is provided through the "Cell-Indirect" function. For

example, if the value of cell F16 is the ASCII string "RF4", then

the formula entry (Cell-Indirect F16) would return the value of

cell RF4. As a final example of indirection consider the values

of the following cells:

A4: "B17"

A10: "B29"

32

B17: 34 (Decimal)

B29: 12 (Decimal)

A formula entry of (+ (Cell (Cell A4)) (Cell-Indirect A10)) would

return a decimal value of 46.

2.4.4 THE "CELL-OFFSETO FUNCTION

A lookup function was also deemed useful in order to

simulate digital systems. This function is most useful when

simulating a component that needs the capability to index into a

block of data such as a memory system. The function that provides

this is "Cell-Offset." This function takes three parameters: the

anchor cell location, an x-offset from the anchor location, and a

y-offset from the anchor location. An example best describes its

function: (Cell-Offset C5 3 10) returns a value equal to the

value of cell F15. The offset values may be any integer or a Lisp

expression which returns an integer. If a parameter for an offset

does not evaluate to an integer, or the offset cell does not

exist, this function returns nil. For another example, consider

the following cell values and formulas:

F4: -6

FS: (Cell P4)

P18: 3

F20: 5

The formula (cell-offset L23 (cell F5) (cell F18)) will return a

decimal value of 5.

V

33

2.4.5 THE "DUAL-RANK-REGISTER" FUNCTION

The ability of Logic Calc to describe digital systems is

most apparent with the use of the function "Dual-Rank-Register."

This function allows a user to describe a dual-rank register in a

single cell. A dual-rank register is an elementary digital module

used in many digital circuits [2, 3, 9]. Its use is described in

Section 4.4.

2.4.6 BOOLEAN OPERATIONS IN CELL FORMULAS

As a digital systems design tool, a key advantage of

Logic Calc over financial spreadsheets such as Lotus 1-2-3 is its

ability to perform Boolean operations. Logic Calc cell formulas

can utilize Lisp Boolean operators to perform logical operations

at the cell, byte, or bit levels [5, 12].

Boolean operations at the cell level are best illustrated

with the "Cell" function. For example, a cell formula of

(Logand (Cell Al) (Cell A2)) will return a value equal to the

bitwise logical "anding" of cells Al and A2. The user must

consider the bits property of each cell when writing Boolean

operations at the cell level. When used as parameters of Boolean

operations, cells of different lengths are right-aligned with

leading zeros placed on the left for cells with lower bit values.

The final result is left-trimmed as per the formula cell's bit

property. For example, consider the following cell formulas,

values, and bit specifications:

CIO, MI

34

Cell Al: 0110101001 Binary Value (10 Bits)

Cell A2: 01111 Binary Value (5 Bits)

Cell A3: (Logand (Cell Al) (Cell A2))

If cell A3 has a bit property of 10, its formula will yield a

binary value of 0000001001. If cell A3 has a bit property of 5,

its formula will yield a binary value of 01001.

As a contrasting example, consider a change to the cell

formula for cell A3 to specify a logical inclusive-or:

Cell Al: 0110101001 Binary Value (10 Bits)

Cell A2: 01111 Binary Value (5 Bits)

Cell A3: (Logior (Cell Al) (Cell A2))

Now, if cell A3 has a bit property of 10, its formula will yield

a binary value of 0110101111. If cell A3 has a bit property of 5,

its formula will yield a binary value of 01111.

For byte operations, Lisp provides several functions for

dealing with an arbitrary-width field of contiguous bits appearing

anywhere in a cell [12]. In the following example, cell B2 uses

the Lisp functions "Ldb" and "Byte" to extract a 4-bit byte from

cell Bl starting at bit #2:

Cell Bl: 1111010110 Binary (10 Bits)

Cell B2: (Ldb (Byte 2 4) (Cell Al))

With a value of 10 for its bit specification, the resulting value

of cell B2 is 0000000101 Binary.

35

To perform operations at the bit level, Lisp provides the

capabilities to test any bit of any cell [5. 12]. For example,

the cell formula (Logbitp 3 (Cell F16)) returns a value of true if

bit 3 of cell F16 is 1. Other bit operations can be performed by

extracting a 1-bit byte from a cell as described above.

LOGIC CALC DEVELOPMENT AND OPERATION

3.1 PROGRAMMING ENVIRONMENT

The programming environment used for the development of

Logic Calc was the Texas Instruments Explorer workstation. This

proved to be an ideal tool for the development and implementation

of the spreadsheet. A combination of extensive window

capabilities, mouse sensitivity, incremental compilation and

evaluation capabilities, and extensive debugging capabilities

allowed rapid development of a user-friendly, highly interactive

spreadsheet.

3.1.1 WINDOW CAPABILITIES AND MOUSE SENSITIVITY

One key feature of the Explorer that aided this research

was a sophisticated window capability which resulted in a easy-to-

develop user interface for the spreadsheet [6] . The user

interface of Logic Calc consists of a team of three windows that

share a common input buffer. An Explorer constraint frame

determines the sizes and positions of the three windows. Figure

11 depicts the team of three windows.

The largest window, the spreadsheet window, depicts the

row and column indexes and the values of the cells that can fit

within the window. This window is simply an Explorer truncating

window mixed with a mouse-sensitive typeout window [6]. This type

36

37

LOGIC CALC
A B C D E F 0 H

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Interaction Window
Main Menu

File Size GoTo Calc Exit

Figure 11. Logic Calc User Interface

38

of window allows certain items to be output so that they are

highlighted when the mouse cursor is positioned over them. The

spreadsheet program was designed to respond to menu choices when

the user clicks the mouse upon the highlighted mouse-sensitive

item. This gives the user the capability of using the mouse to

select spreadsheet cells, columns or rows for viewing, editing,

copying, moving, inserting or deleting.

The second window of the constraint frame is the

Interaction Window. This typeout window [6] is used to output

information requested by the user, to display certain messages,

and to input user responses to various program prompts.

Essentially, anything that must be typed by the user to edit the

spreadsheet is generally input through this window.

The third window of the constraint frame is the Logic

Calc Main Menu. This is an Explorer command-menu window which

allows the spreadsheet programmer use of the mouse to select items

of the Main Menu [6]. The Main Menu consists rf choices that can

initiate file operations, change the size of the spreadsheet,

select the region of the spreadsheet to be viewed, recalculate the

spreadsheet, or exit the spreadsheet to terminat-., editing

operations.

3.1.2 INCREMENTAL COMPILATION AND INTERPRETATION

Another feature that allowed rapid program development

was the flexibility of the Explorer environment to accommodate

I

* * * *~. - .* .* -

39

various degrees of compilation and interpretation [73. During

development of Logic Calc, it was possible to select between a

recompilation of the entire Logic Calc program, the changed

sections of that Logic Calc program, or just a specified region of

the Logic Calc program. This allowed an incremental compilation

ability which aided in the incremental, design and test, bottom-up

software development methodology that was used. The Explorer

environment also supported an interpretive mode with similar

degrees of freedom as to the amount of code to be evaluated. This

allows testing of various segments of code without recompiling,

thereby speeding up testing of the Logic Calc program.

3.1.3 DEBUGGING CAPABILITIES

The final element of the Explorer environment that stood

out as an aid during Logic Calc program development was an

extensive interactive, on-line debugger. When program errors

arose during testing of Logic Calc, the debugger printed out

highly informative error messages and offered the ability to

examine program variables at the time of the error. Depending on

the type of error, the debugger often offered the capability to

proceed from the error, reading a replacement value for the one in

question. With this extensive debugging capability, it was easy

to locate the source of errors, and sometimes corrections could be

made and the test continued from the point of the error, without

40

exiting the test. Coupled with the capability to accomplish

incremental compilation, the debugger was the primary reason for

the ability to rapidly develop a sophisticated user interface to

Logic Calc.

3.2 LOGIC CALC OPERATION

The user interface to Logic Calc was designed to utilize

menus and mouse selection whenever possible. Appendix A is the

source code for Logic Calc. The rest of this section serves as a

users manual for Logic Calc operations.

3.2.1 LOGIC CALC INITIALIZATION AND TERMINATION

Logic Calc is stored in SEL-5 and SEL-6 Explorer

workstations of the University of Texas Symbolic Engineering

Laboratory in the local Logic-Calc directory under the filename

"Logic-Calc.Xfasl." The easiest way to start the program is to

enter the ZMACS editor and select "Load File" from the Explorer

Suggestions Menu. Then simply respond to the prompt with "Logic-

Calc;Logic-Calc". Logic Calc will automatically be loaded and

initialized. At this point, the program is an edit mode.

Selection of items from the Logic Calc Main Menu and editing of

columns, rows and cells are possible. The program is simply

looping, waiting for a command from the user.

To terminate a Logic Calc session, simply click on the

"Exit" option from the Logic Calc Main Menu.

41

Subsequent reentries into Logic Calc after the initial

load can be accomplished by evaluating "(Restart)" from a Lisp

Listener or ZMACS buffer.

3.2.2 SPREADSHEET SIZE

The spreadsheet size is adjustable, limited primarily by

the amount of virtual memory, the length of strings contained in

string cells, the bit size of constant and formula cells, and the

complexity of formula cells. With 115 Megabytes of virtual memory

available, it was possible to create a spreadsheet of 50,000 null

cells; 50,000 constant cells of 32 bits; 50,000 string cells, each

containing a ten character ASCII string; and 50,000 32-bit formula

cells, each containing a simple cell formula.

The user can change the size of the spreadsheet by

selecting the "Size" item from the Logic Calc Main Menu. He will

then be prompted for the number of rows and columns in the spread-

sheet. The program currently limits the user to a spreadsheet of

400 rows by 300 columns, but this could easily be changed by

adjusting the program constants "Max-Number-of-Rows" and "Max-

Number-of-Columns" at the beginning of the source program. If

more than 702 columns are specified for Max-Number-of-Columns,

changes will have to be made to accommodate a three-letter column

indexes in the "Row&Col" function and the "Column-String"

function.

|V

42

3.2.3 FILE OPERATIONS

Because it is necessary to save spreadsheets for later

work, file operations wore deemed necessary for Logic Calc.

Although these file operations were kept at a minimum, they are

sufficient for proper operation of the spreadsheet. Basically, a

spreadsheet can be written to, or retrieved from, the Logic Calc

directory of the local machine. To accomplish other file

operations, such as deleting, renaming or copying spreadsheets, it

is necessary for the user to exit Logic Calc and use the tools

provided by the Explorer workstation. To initiate a file write,

the user should click upon the "File* menu item on the Logic Calc

Main Menu. He should then select *Save" from the next menu. The

user will be prompted for the file name through the Interaction

Window. If the name given already exists as a saved file, a new

copy is saved, with a higher version number. Read operations are

accomplished in a similar manner. If more than one copy of the

specified file exists during read operations, the file with the

highest version number is selected. If the specified file does

not exist, the user is informed with an error message through the

Interaction Window.

3.2.4 GO-TO OPERATIONS

Depending on the selected widths of columns, Logic Calc

automatically selects the number of columns displayed. The number

of rows that are displayed is 36. Because scrolling operations do

S.-

I.

-- .* O i ,,%. ' V .%* . ,' U. .j/ ,j ,' ,', : '.' .

43

not exist in Logic Calc, the user must select the "Go To" option

from the Logic Caic Main Menu to view various regions of the

spreadsheet. After selecting this option, the user must respond

to the prompt with the cell location that he wishes to be placed

in the upper left corner of the screen. Logic Calc will then

change the display as specified. If the specified cell does not

exist, Logic Calc will issue a beep. The "Go To" item from the

Logic Calc Main Menu may also be used during Move and Copy

operations on rows, columns and cells as discussed in Section

3.2.6.

3.2.5 MANUAL SPREADSHEET RECALCUIATION

To accomplish incremental design and testing of a digital

system on Logic Calc, it is often desired to recalculate the

spreadsheet during editing operations. This can be accomplished

by selecting "Calc" from the Logic Calc Main Menu. The

spreadsheet will then be recalculated, and the screen will be

altered to display then updated results. This action is very

similar to pressing the *Calc" function key when using Lotus 1-2-3

[10]. If there are numerous formulas within the spreadsheet, this

recalculation process may take a few seconds.

I

44

3.2.6 SPREADSHEET EDITING OPERATIONS

When first activated, the spreadsheet is in an edit mode.

Cells, rows or columns may be edited. In this edit mode, the

spreadsheet program simply loops continuously, awaiting mouse

clicks from the user. Upon detection of a mouse click, the main

program loop calls the appropriate function to accomplish the

requested operation.

Editing operations on cells are initiated by the use of

mouse. The user locates the cell with the mouse cursor. The cell

selected by the mouse is highlighted with a box-like cursor. To

simply view the highlighted cell's contents, the user should click

left on the mouse. If the user click's right, he is presented

with a menu to view the cell, edit (rewrite) the cell, change the

cell's bit specification, set the cell's output display to binary

or hexidecimal, copy the cell to another location, move the cell

to a new location, or erase the cell. When the user selects an

item from this menu, Logic Calc will then prompt the user for the

necessary information to accomplish the editing operation that he

selected.

3.2.6.1 CELL VIEW

If the user selects to view a cell, the following

information is displayed in the Interaction Window: cell

location, cell type, cell value (both decimal and hexidecimal for

to w ,*r r *r

45

integer values), cell bit size, and cell formula (if a formula

cell).

3.2.6.2 CELL EDIT

If the user selects to edit a cell, Logic-Calc presents

another menu to the user so that he can create a null, constant,

string, or formula cell. The cell's current contents are then

displayed, and the user is prompted through the Interaction Window

for the necessary information to complete construction of the

cell. If errors are made during cell editing operations, Logic

Calc beeps and the cell construction is aborted.

3.2.6.3 CELL BIT SIZE

If the user selects to change the bit specification of a

cell, he is prompted to enter the size in bits for the specified

cell. If the user does not respond with a positive integer less

than 127, Logic Cell simply beeps to signify an error has

occurred.

3.2.6.4 CELL OUTPUT DISPLAY

If the user selects to change the output display of a

cell, he is presented with another menu to choose between binary

or hexidecimal with the mouse. He simply needs to click the mouse

on the desired choice of cell output display.

46

3.2.6.5 CELL MOVE AND CELL COPY

If the user selects to move or copy a cell, Logic Calc

prompts the user to select a target location with the mouse.

Before selecting a target cell, the user may make use of the "Go

To" option from the Logic Calc Main Menu to display a different

portion of the spreadsheet.

3.2.6.6 CELL ERASE

If the user selects to make the selected cell empty, the

cell is erased and the display updated appropriately.

3.2.6.7 COLUMN AND ROW EDITING

Other editing operations exist for entire rows and

columns, and are accomplished in a similar manner. An entire row

or column of null cells may be inserted. Similarly, rows and

columns can be moved, copied or deleted. The user simply needs to

highlight the row or column index, click right, and choose from

the items presented. Because a large portion of the spreadsheet

is altered during this operations, they are accomplished only

after the user confirms his intentions through a second

confirmation menu.

3.2.6.8 COLUMN WIDTH SETTINGS

The width of a column will affect the display of values

within that column. The value of each column width specifies the

maximum number of characters that may be displayed horizontally

. lM

47

for each cell within the column. Cells with ASCII string values

will have their output display right-trimmed to fit within the

column width. Cells with numeric values will be displayed by a

string of asterisks if their bit size generates a display in the

current output-display format that requires more characters than

the column width.

To change a column width, the user needs to highlight the

column index with the mouse and click left. The user is then

prompted for the requested width of the column. The display will

then be updated as requested. If the user does not respond with a

positive integer, Logic Calc simply beeps to signify the error.

3.2.7 AUTOMATIC SIMULATION

In Lotus 1-2-3, a program written with Lotus macros was

executed to initiate and drive an automatic simulation of a

digital system [10, 13). The Lotus 1-2-3 macros can be difficult

to read, write, and edit because they are stored in individual

spreadsheet cells and are often hidden by the contents of other

cells. Also, Lotus macros utilize awkward semantics that can be

difficult to understand.

In Logic Calc, an automatic simulation is initialized

and driven by a Logic Calc driving program. To write and execute

a Logic Calc driving program, Logic Calc should be exited

normally. The driving program can then be written and executed

48

from the ZMACS editor. ZMACS offers extensive full-screen editing

operations, file operations, and incremental compilation and

evaluation capabilities [7]. Another advantage that Logic Calc

has over Lotus is that the Logic Calc driving program is written

in Lisp, the same language used for cell formulas, the same

language used for the development of Logic Calc, and the the same

language used for the operating system of the Explorer

workstation. This greatly simplifies the initial learning process

of Logic Calc and provides for easy modifications to Logic Calc

for specific applications.

The Logic Calc driving program can simulate controlling

digital components at several levels of abstraction. During the

simulation, the driving program can function as a controlling

processor, a microcontroller, or it can simply drive a clock.

Section 4.4 details the development of a driving program used to

drive a clock. For the microprocessor design presented in Section

5, the driving program functions as the microcontroller and clock

driver. Several Lisp functions have already been provided by Logic

Calc to aid in the development of the driving program.

3.2.7.1 THE "PRINT-SPREADSHEET" FUNCTION

The Logic Calc function "Print-Spreadsheet" should be one

of the first Lisp functions evaluated. This function will simply

display the spreadsheet on the screen.

49

3.2.7.2 THE "CALC" FUNCTION

The Logic Calc function "Calc" should be used to

recalculate the spreadsheet. This is identical to selecting "Calc"

from the Logic Calc Main Menu. If the Lisp keyword "no-redisplay"

is included as an argument and set to "t", then the display will

not be updated after a recalculation. Use of the "no-redisplay"

construct speeds up simulations where interim results are not

checked.

3.2.7.3 THE "LOAD-CELL" FUNCTION

The Logic Calc function "Load-Cell" can be used to load

an integer value into any cell. This function simply updates the

"value" and "changed-value" items in the cell's property list. It

does not change the type of cell. This function can be used to

simulate any external input (Load, Reset, Databus Input...) or

loading of registers controlled by the driving program. The two

parameters for this function are:

1. Cell Location (i.e. "A12").

2. Value to be loaded.

3.2.7.4 THE "RESTART" FUNCTION.

This function can be evaluated at anytime during a

driving program to return to the editing mode. This gives the

user an opportunity to temporarily stop an automatic simulation to

50

examine values or to return to circuit construction after an

automatic simulation.

3.2.7.5 USER-DEFINED FUNCTIONS

The user can write his own functions to tailor Logic Calc

to specific applications. Also, a the Lisp function "Defun" in a

driving program can be used to name cell, greatly increasing

documentation of cell formulas. For example, the following Lisp

functions can be used to name two cells as data buses and a third

cell as a control signal:

(Defun DatabusA () (Cell F4)
(Defun DatabusB () (Cell F5)
(Defun Control 0 (Cell C5)

A cell formula, using a Lisp conditional construct, that simulates

a selector can now be written in a self documenting form:

(Cond ((Equal 0 Control) (DatabusA))
((Equal 1 Control) (DatabusB)))

This method of naming cells through use of a driving program was

used extensively in the microprocessor presented in Section 5.

A more complicated driving function can simulate a microcontroller

by checking the values of the cells that function as clocks and

cells that simulate the status register and instruction register.

Based on the contents of these cells, the function "Load-Cell" may

be utilized to load the microinstruction register. The micro-

processor presented in Section 5 utilizes this feature in its

driving program, which is listed in Appendix 2.

A: f# '- '' ? . '- - J ' , ' -' -- ' -' .- ' . , ' '" . .' . . . , - . , - . - .. " - - , " . " -

DIGITAL SYSTEM SIMULATION WITH LOGIC CALC

Generally, the components in a digital system operate in

parallel with a common clock synchronizing operations. A digital

system also includes numerous combinational logical circuits that

form interconnections between the parallel components. These

interconnections often form circular references: the output of

Unit A is an input to Unit B, and the output of Unit B is the

input to Unit A. Figure 12 depicts this concept of a digital

system. A spreadsheet serves as a useful tool to simulate a

digital system because of its fundamental abilities to map

parallel operations and their circular interconnections onto a

single, serial processor. The methods that Logic Calc utilizes to

accomplish this mapping are presented in this section.

4.1 LOGIC CALC SIMULATION OF PARALLEL OPERATIONS

In a digital system, the input into each register must be

resolved before that register is clocked. This input is usually a

logical combination of other registers, memory, and control

signals. To simulate a digital system, a spreadsheet must

maintain the proper relationships between components. For

example, if a Logic Calc spreadsheet was made to model the circuit

in Figure 13, six cells would be needed to simulate the

51

Los I

52

A B

R R
E E

INPUr G G ourpurI Combinational 1 0 -
S Logic S
T T
E E
R R

CL=K
CLK ax

F'

R
E
G

Combinational I
Logic S OUTRIT

T
E
R

C

Figure 12. Concept of a Digital System

53

D
A
T
A
B
U
S

A

Figuremb13.tEx al Diiasici

-~oi T

54

components: one for each data bus, one for each register, and one

for the combinational logic circuit. In this example digital

system, the output of the combinational logic circuit must be

resolved before clocking of Register A. Similarly, in Logic Calc,

the equation for the cell representing the combinational logic

circuit must be calculated before the equation for the cell

representing Register A. Also, in the example digital system, the

clocking of both registers occurs in parallel. In Logic Calc, the

order of calculation for the cells representing the two registers

is not important: independent parallel operating components can

be calculated one at a time without regard to order.

4.1.1 SOLUTION TO THE RECALCULATION PROBLEH

In order to correctly map the parallel components with

their interconnections onto a spreadsheet, two solutions to handle

the order of cell recalculation are possible. The first would be

to maintain a list during spreadsheet editing that describes

dependency relationships and the order of cell recalculation and

utilize this list during spreadsheet recalculation. This method

was not chosen in the design of Logic Calc due to the complex data

structure that would arise and the problems with circular

references discussed in Section 4.2. Rather, the solution used in

Logic Calc is patterned after that used in Lotus 1-2-3. This

solution utilizes a check of the parameters to each cell formula

during spreadsheet recalculation. If a parameter of a cell formula

55

is another formula cell, recalculation of the first cell is

postponed until the second cell is recalculated. For example,

during recalculation of cell F4, if a parameter of the cell F4's

formula is found to be cell F16 and F16 is also a formula cell,

the recalculation of cell F4 is postponed and the recalculation of

cell F16 is begun. When cell F16 has been recalculated, the

recalculation of cell F4 may be continued.

4.1.2 IMPLEMENTATION OF THE RECALCULATION SOLUTION

To implement this solution in Logic Calc, a global list

of all formula cells is maintained in the chronological order in

which they were entered into the spreadsheet. This global list is

stored in the variable "Formula-List." The recalculation flag in

the cell property list is also used to prevent a formula cell from

being recalculated more than once during a single spreadsheet

recalculation. A spreadsheet recalculation is accomplished by

first setting all formula cell's recalculation flag to nil. Next,

each cell listed in "Formula-List" is sequentially recalculated.

The first step during recalculation of a cell is to test the

recalculation flag. If the flag is set to "true," the

recalculation of that cell is terminated. If the flag is "nil,"

the flag is set to "true" and the recalculation of that cell's

formula is initiated. During recalculation of the cell's formula,

if another formula cell is found to be a parameter of the formula,

56

the current recalculation is postponed until recalculation of the

cell used as a parameter is accomplished. Tables 2, 3, and 4 show

that this method of recalculation produces identical results

regardless of the ordering of of "Formula-List." The asterisk in

the "Processing" column of these tables identifies which cell is

being processed in each step.

4.2 CIRCULAR REFERENCES

Digital systems of appreciable size will have circular

references. Logic Calc's method of recalculation handles circular

references of cells with predictable results. The simplest

example of a circular reference is a cell functioning as a

counter. If cell Al were to have the formula (+ 1 (Cell Al)), a

circular reference is established because this cell refers to

itself. The Logic Calc program will increment this cell by one

for each spreadsheet recalculation. Table 5 shows the steps taken

when recalculating a spreadsheet with this example circular

reference. Logic Calc also handles more complex circular

references, involving several cells, regardless of the ordering of

the entries under "Formula-List." The microprocessor described

in Section 5 presents several examples of circular references.

4.3 NON-CONVERGING CIRCUITS

If a circuit that does not converge is simulated, a

circular reference must be present and the results will be

ee
"" -- " ' 'a .- i ' '

" $ ' ' ' m ' ' ' °
- " _ "' ' '%"-- ' L .=?" % "' ' ''"' ''

57

OrderLng ~a1 Forula Vle Recale flu
1 B (+ 1 (Cell B17)) XXX Nil
2 B17. (+ 1 (Cell B29)) XXX Nil
3 B29 (+ 3 4) 1X= Nil

1) All formula cell's recalculation flag set to nil.

Prsin QL1 EaXMAA Value Recalc flu
* B1 (+ 1 (Cell B17)) XXX T

B17 (+ 1 (Cell B29)) XXX Nil
B29 (+ 3 4) xxx Nil

2) Cell Bl's recalculation flag set but evaluation postponed.

Pr sng Fmul Value Recalc El" ,
B1 (+ 1 (Cell B17)) XXX T
B17 (+ 1 (Cell B29)) XXX T
B29 (+ 3 4) XXX Nil

3) Cell B17's recalculation flag set but evaluation postponed.

Prcuing Forula Value EIa fl
B3 (+ 1 (Cell B17)) XXX T
B17 (+ 1 (Cell B29)) XXX T

* B29 (+ 3 4) 7 T

4) Cell B29's recalculation flag set and value set to 7.

Proeeing g&U Forma Value Recale fl
B3 (+ 1 (Cell B17)) XXX T

* B17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T

5) Cell B17's evaluation continued resulting in a value of 8.

Procesivngalue aecalc flu
* B1 (+ 1 (Cell B17)) 9 T

B17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T

6) Cell Bl's evaluation continued resulting in a value of 9.

TABLE 2. ORDER OF EVALUATION (FORMUIA LIST: B1, B17, B29)

A,..

58

Ordering C FrmlaVau Renalr f)"&
3 31 (+ 1 (Cell B17)))DCX Nil
1 B17 (+ 1 (Cell B29)) xOOC Nil
2 329 (+ 34) xOGx Nil

1) All formula cell's recalculation flag set to nil.

Procesing Qa1 Formula Value Recale flu
Bl (+ 1 (Cell B17)) xOC Nil

* 517 (+ 1 (Cell 329)) ~OCT
329 (+ 34) xOOC Nil

2) Cell 317's recalculation flag set but evaluation postponed.

Prcesig g&U omula Value Reaak la
31 (+ 1 (Cell 317)) xxx Nil
B17 (+ 1 (Cell B29)) XXX T

*B29 (+ 34) 7 T

3) Cell B29's recalculation flag set and value set to 7.

Processing §&U Forula VLa1l Recalc flag
Bl (+ I (Cell 317)) xxx Nil

*B17 (+ 1 (Cell 329)) 8 T
329 (+ 34) 7 T

4) Cell 317's evaluation continued resulting in a value of 8.

Processing LIU Frmua Vlu Bie.a1 la
* 3 (+ 1 (Cell 317)) 9 T

317 (+ 1 (Cell 329)) 8 T
329 (+ 34) 7 T

5) Cell Bl's recalculation flag set and value set to 9.

TABLE 3. ORDER OF EVALUATION (FORMULA LIST: 317, 329, 31)

59

Qrdrine 1 Formula Value R fl"
3 B1 (+ I (Cell Bl7)) XXX Nil
2 B17 (+ 1 (Cell B29)) XXX Nil
1 B29 (+ 3 4) XXX Nil

1) All formula cell's recalculation flag set to nil.

reing Formula Value Recalc &
BI (+ 1 (Cell 317)) XXX Nil
B17 (+ 1 (Cell B29)) XXX Nil

* B29 (+ 3 4) 7 T

2) Cell B29's recalculation flag set and value set to 7.

Poesng g1 Fomula Value Recalc aa
BI (+ 1 (Cell B17)) XXX Nil

* B17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T

3) Cell B17's recalculation flag set and value set to 8.

Po sng Formula Value RecalcFla
* B1 (+ 1 (Cell B17)) 9 T

B17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T

4) Cell Bl's recalculation flag set and value set to 9.

TABLE 4. ORDER OF EVALUATION (FORMULA LIST: B29, B17, B)

60

Formula Value Recale l

A10 (+ 1 (Cell A10)) 9 Nil

1) All cell's recalculation flag's are set to nil

Cell Formula Value Recalc FA

A10 (+ 1 (Cell A10)) 9 T

2) Cell Al0's recalculation flag is set but evaluation postponed
in order to evaluate its paramater (which is also A10).

LIUFormula Value Recalc Fl
A10 (+ 1 (Cell A10)) 9 T

3) Evaluation of Cell A10 is begun recursively, but this time the
check of the recalculation flag ends the recursive evaluation
with no changes made.

Cell Formula Value Recalc Fj

A10 (1 (Cell A10)) 10 T

4) The original evaluation of Cell A10 is continued resulting
in a value of 10.

TABLE 5. LOGIC CALC'S METHOD OF HANDLING A CIRCULAR REFERENCE

0!

61

dependent on the ordering of the entries under "Formula-List." An

example of such a circuit is shown in Figure 14. The output of

each adder is used as the input to the other adder. This circuit

will never converge to constant values for both adders. Such a
circuit can be simulated by two cells. Tables 6 and 7 demonstrate

that different orderings of "Formula-List" will produce different

results for a spreadsheet recalculation. When designing a digital

system, care must be taken to avoid non-converging circuits

because Logic Calc will not identify non-converging circuits as

errors and will give misleading results.

4.4 CLOCKING OF A DIGITAL SYSTEM

A fundamental aspect of a digital system is that many

components utilize a clock to load registers and synchronize

operations. Logic Calc presents a simple way for simulating the

clock in a digital system. Every recalculation of the spreadsheet

can be made to simulate one of four states to a clock: the rising

edge, the high level, the falling edge, and the low level. To

accomplish this, one of the cells within the spreadsheet can be

made to iterate between four values with each value describing one

of the four states of the clock. Other cells, functioning as

clocked digital components, can use conditional constructs in

their cell formulas to test the value of the "clock" cell. This

will enable the cells functioning as clocked digital components to

act differently for each state of the simulated clock.

-o

62

A

v D

R

S D

1- R

B

Figure 14. Non-Converging Circuit

°

63

Oruxden gi1 Formula Value ~ fec l E
1 F15 (+ 1 (Cell F16)) 0 Nil
2 Fl6. (+ 1 (Cell F15)) 0 Nil

1) All cell's recalculation flag's are set to nil.

Prcssn F&U (orul 1au (Cellc E) 0a"
F15 (+ I (Cell F16)) 0 Ni

2) Cell F15's recalculation flag is set but evaluation postponed.

Processing Cell Formula Value Recalc Flap,
F15 (+ 1 (Cell F16)) 0 T

*F16 (+ 1 (Cell F15)) 1 T

3) Cell F16's recalculation flag is set and value set to 1.

Process ing Cell Formula Value Recaic E a"
*F15 (+ 1 (Cell Fl6)) 2 T

Fl6 (+ 1 (Cell F15)) 1 T

4) Cell F15's evaluation is continued yielding a value of 2.

TABLE 6. NON-CONVERGING CIRCUIT OF FIGURE 14.
(FORMULA LIST: F15, F16)

64

reinz Formula Value e l
2 F15 (+ 1 (Cell F16)) 0 Nil
1 F16 (+ 1 (Cell F15)) 0 Nil

1) All cell's recalculation flag's are set to nil.

Processin Formula Value Recalc Els
F15 (+ 1 (Cell F16)) 0 Nil

* F16 (+ 1 (Cell F15)) 0 T

2) Cell F16's recalculation flag is set but evaluation postponed.

Processing §l Formula Value Recalc flag
* F15 (+ 1 (Cell F16)) 1 T

F16 (+ 1 (Cell F15)) 0 T

3) Cell F15's recalculation flag is set and value set to 1.

Processing Ce Formula Value Recalc u
F15 (+ 1 (Cell F16)) 1 T

* F16 (+ 1 (Cell F15)) 2 T

4) Cell F16's evaluation is continued yielding a value of 2.

TABLE 7. NON-CONVERGING CIRCUIT OF FIGURE 14.
(FORMULA LIST: F16, F15)

65

To illustrate this concept of clocking, consider a

spreadsheet with the following specification for cell A2:

Type: formula

Bits: 2

Value: 0

Formula: (+ 1 (Cell A2))

Because Cell A2's bit specification restricts its value to 0, 1,

2, and 3, it can define four states of a clock with unique integer

values depicting each state:

0: Low

1: Rising Edge

2. High

3. Falling Edge

The bit specification and the circular reference of cell A2 cause

its value to cycle during multiple recalculations of the

spreadsheet. For each recalculation of the spreadsheet, the value

of cell A2 will iterate: 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, ...

Other cell's functions may include conditional constructs

to check the value of cell A2 to determine the phase of the clock.

A D flip-flop triggered on the rising edge of the clock can be

simulated by cell CS with the following cell formula:

(Cond ((Equal 0 (Cell A2)) (Cell A3)) ;A3 is the input to
(T (Cell C5))) ; the flip-flop

When testing a digital system on Logic Calc, clocking of

the digital system can be initiated in two ways. The user can

66

simply click the mouse on the "Calc" item from the Logic Calc Main

Menu. This would initiate a single spreadsheet recalculation and

change the state of the clock. Four clicks on the "Calc" item

would be necessary to generate a full clock cycle. An alternative

method to generate clock signals would be to exit Logic Calc and

execute a driving program that generates clock pulses through the

"Calc" function. For example, the following driving program will

generate twenty five cycles of the clock:

(Print-Spreadsheet)
(Loop for i from 1 to 100 do

(Calc))
(Restart)

4.5 REGISTERS

In a digital system, several registers can be clocked at

the same time. If these registers are constructed as simple flip-

flops, the output of these registers must not be used as inputs

into other registers using the same clock edge because the output

of the first register may or may not change during the clocking

edge. Figure 15 depicts this type of circuit with registers

constructed with a single D flip-flop (ie. single-rank registers).

In this example, the output of the Y Register is unpredictable

because both registers are using the same clock edge to load their

inputs and it cannot be determined whether the output of the X

Register will change during the clocking edge. This type of

circuit construction must be avoided.

S
-- " N "% N

67

D FLIP-FLOP D FLIP-PLOP

R R
E E
G G
I I
S s
T _ _ _ _ T

0D E Q DE Q
R R

x y

CLK. CLK.

Figure 15. Improper Register Construction

68

A simple method of circuit construction which avoids this

clocking problem can by accomplished by replacing each of the

single-rank registers of Figure 15 with dual-rank registers. A

dual-rank register is an elementary digital module comprised of a

collection of edge-triggered master-slave D flip-flops (Figure

16). Used as a register, it is useful in digital systems because

of its ability to feed its output into another digital component

using the same clock, even while loading new data [1, 2, 9]. Use

of dual-rank registers in a digital system eliminates the problems

of circular references. By clocking all inner ranks of the

registers with the same clock edge and all outer ranks of the

registers with the opposite clock edge, a digital system

containing cicular references is reduced to two separate,

independent systems, each containing no circular references.

In Lotus 1-2-3, several cells would be required to

simulate a dual-rank register [13]. Logic Calc, however, provides

a special function for simulating a dual-rank register in a

individual cell. The "Dual-Rank-Register" function, introduced in

Section 2, is intended to stand alone as a cell's formula and

takes four parameters:

1. Name. The first parameter must be a unique name.
This parameter creates a variable which internally
stores the output of the A flip-flop.

2. Clock A. The second parameter is a logical
expression that defines when to clock the A flip-flop
in Figure 16.

V V

z A p

69

D FLIP-FLOP D FLIP-FLOP

INPUT D Q D Q OUTPUT

X X'

Figure 16. Dual Rank Register

70

3. Clock B. The third parameter is a logical expression
that defines when to clock the B flip-flop in Figure
16.

4. Input A. The final parameter describes the input of
the A flip-flop in Figure 16.

The cell's value is constantly set to the output of the dual rank

register, the output of the B flip-flop in Figure 16. As an

example, consider the following function specification:

(Dual-Rank-Register RegisterA (Equal 0 (Cell A2))
(Equal 3 (Cell A2)) (Cell D2))

The first parameter, RegisterA, defines a global variable that is

used to hold the output of the A flip-flop. The second parameter,

(Equal 0 (Cell A2)), specifies that the value of cell D2, the

fourth parameter, should be clocked into the register if the value

of cell A2, which may be functioning as a clock, is equal to 0.

The output of the A flip-flop is gated into the B flip-flop (and

available to other components) whenever the value of cell A2 is 3.

Further examples of the use of the "Dual-Rank-Register" function

are given in Section 5.

DEMONSTRATION OF LOGIC CALC'S CAPABILITIES

In order to demonstrate the capabilities of Logic Calc, a

simple microprocessor was designed using Logic Calc. The

microprocessor was patterned after the Motorola 6800 family of

microprocessors [9, 14]. It features two 32-bit general purpose

registers, two 32-bit index register, and a 32-bit stack register.

The arithmetic logic unit (ALU) consisted of only an

adder/subtracter. The status register had flags for zero,

negative, carry, and overflow, which were set/cleared depending

upon the macro instruction. Forty-eight macro instructions were

developed, including a full range of load/store instructions,

stack operations, conditional branching, and basic arithmetic

instructions including add, subtract, increment, and decrement.

The microprocessor is fully microcontrolled. This section

presents the steps taken to design and test this microprocessor

with Logic Calc.

5.1 DESIGN OF THE MICROPROCESSOR

Six steps were utilized to design the microprocessor.

The first step was to decide on the number, type and size of

registers, arithmetic units, and memory units. Next, the data

paths between each unit were designed. Also, a listing of macro

instructions was created. These preliminary decisions were made

71

72

without Logic Calc; a simple scratch pad was used. The hardware

design at this level is presented in Figure 17. The list of macro

instructions is listed in Table 8. Logic Calc was then used to

construct each component of the microprocessor. Paralleling

construction of the individual components, fields within the

microcode instruction were assigned to control the components.

Next, the microinstructions were written and stored in the

microstore. Finally, the microcontroller was designed.

5.1.1 PRELIMINARY STEPS

With Logic Calc in the edit mode, text cells were placed

above the locations of all components to aid in documentation. A

portion of this layout is shown by Figure 18.

A clock was constructed exactly as described in Section

4.4 in Cell A2.

Logic Calc was then exited and a short driver program was

written and executed to provide self-documentation capabilities

for the cell formulas. This driver program consisted of four

parts. The first part gives names to each of the cells simulating

a digital component. A partial listing of this portion of the

driver program follows:

(Defun PC () (Cell A9)) ;Program Counter
(Defun RegA () (Cell A1S)) ;A Register
(Defun RegB () (Cell A18)) ;B Register
(Defun RegX () (Cell A21)) ;X Register
(Defun RegY () (Cell A24)) ;Y Register
(Defun SP () (Cell A27)) ;Stack Pointer
(Defun IDB () (Cell B2)) ;Internal Data Bus

73

INST EG AL

MnD LREG

Figura 17. a 32Bit Miroroessor DeBsge with LoiBC

DBI

REG X

TO.

Memory MA

I
REG Y

74

92oe Instruction 92 .d Instruction

Load Immediate Stack Operations

01 LDAI 18 PUSHA
02 LDBI 19 PUSHB
03 LDXI LA PUSHX
04 LDYI 1B PUSHY
05 LDSI iC POPA

1D POPB
IE POPX

Load Memory Location 1F POPY

06 LDAM
07 LDBM Arithmetic Instructions
08 LDXM
09 LDYM 20 ADD A:- A + B
OA LDSM 21 SUB A:- A - B

22 INCA
23 DECA

Load Memory, Indexed 24 INCB
25 DECB

OB WDA, X 26 INCX
oC LDA, Y 27 DECX
OD LDB, X 28 INCY
OE LDB, Y 29 DECY

Store Memory Location Branching Instructions

OF STAM 2A BSR (Subroutine Call)
10 STBM 2B RET (Subroutinre Return)
11 STXK 2C BRA (Branch Always)
12 STYM 2D BZ (Branch if Zero)
13 STSM 2E EM (Branch if Minus)

2F BC (Branch if Carry)

Store Memory, Indexed
Control Instruction

14 STA, X
15 STA, Y 00 HALT
16 STB, X
17 STB, Y

TABLE 8. LIST OF INSTRUCTIONS FOR MICROPROCESSOR

75

LOGIC CALC
A B C D

1 CLOCK INTNL DBUS ALU REGI MICROINSTRUCT REG
2 4 FF239821 FFFFFFFF 1000110000000001010000
3 Low
4 MEM DAT REG ALU REG2 NEXT MICRO INSTRCT
5 RESET FF239821 FFFFFFFF OAD
6 1
7 MEM ADD REG ALU CODE MICROSTORE
8 PRGM CNTR OOOOOOAC 1 1110100000000000001101
9 000000AD 1000110000000001001001
10 DBI REGISTER ALU OUT 1000110000000010001001
11 INSTRT REG 00000015 I-I--FITE 1000100000000100001001
12 00000015 1000100000010000001001
13 EXTNL DBUS STAT REG 1000100001000000001001
14 REGISTER A FF239821 0101 1110100000000000001001
15 FF239821 1000110000000001010000
16 MEMR 1000110000000010010000
17 REGISTER B 0 1000100000000100010000
18 0023C3D3 1000100000010000010000
19 MEMW 1000100001000000010000
20 INDX REG X 1 1000110000000001100000
21 0000022B 1000110000000001101000
22 1000110000000010100000
23 INDX REG Y 1000110000000010101000
24 0000022C 0001010000000000010000
25 0011010000000000010000
26 STACK REG 0101000000000000010000
27 00000045 0111000000000000010000
28 1011000000000000010000
29 0001010000000000100000

Interaction Window

Main Menu
File Size GoTo Calc Exit

Figure 18. Logic Calc Display of Microprocessor

I%

4-

76

(Defun EDB () (Cell B15)) ;External Data Bus
(Defun Adder () (Cell C12)) ;Adder/Subtracter

The second part of the driver program was developed to

test the state of the clock, simulated by Cell A2. These functions

were used by the registers and returned a value of "T" if the V

clock was in the corresponding state:

(Defun Rising () (Zerop (Cell A2)))
(Defun High () (Equal (Cell A2) 1))
(Defun Falling 0 (Equal (Cell A2) 2))
(Defun Low () (Equal (Cell A2) 3))

A third set of user-defined functions were used to test

the cells that simulated the Reset signal, Memory Read, and Memory

Write:

(Defun Reset () (Zerop (Cell A6))
(Defun MemR () (Zerop (Cell B21))
(Defun MemW () (Zerop (Cell B24))

The last part of the driver program consisted of a set of

user-defined functions that were used to test individual bits

within the microcode instruction register, cell D2. Up to five

bits of the microcode instruction register could be tested. The

function "Microbitp" returned a value of "T" if all bit positions

listed as parameters were 1. The function "Microbitn" returned a

value of "T" if all bit positions listed as parameters were 0.

These two functions were extremely valuable for two reasons.

First, they provided documentation of cell formulas. Second, and

perhaps more important, is that they provided a simple method of

• -, ,.-.-.. . -. . -. . -.

77

masking and testing for any combination of bits in the

microinstruction register. Such Boolean operations are lacking in

Lotus 1-2-3. The listings for these two functions follow:

(Defun Microbitp (A &Optional B C D E)
(And (Cond (E (Logbitp E (Cell D2))) (T))

(Cond (D (Logbitp D (Cell D2))) (T))
(Cond (C (Logbitp C (Cell D2))) (T))
(Cond (B (Logbitp B (Cell D2))) (T))
(Logbitp A (Cell D2))))

(Defun Microbitn (A &Optional B C D E)
(Not (Or (Cond (E (Logbitp E (Cell D2))) (T))

(Cond (D (Logbitp D (Cell D2))) (T))
(Cond (C (Logbitp C (Cell D2))) (T))
(Cond (B (Logbitp B (Cell D2))) (T))
(Logbitp A (Cell D2)))))

5.1.2 CONSTRUCTION OF INDIVIDUAL COMPONENTS

Constructing a digital component was a three step

process. First, microcode instruction fields were assigned to

control the component. Second, the cell formula was written. The

"Dual-Rank-Register" function was used in the cell formulas for

all registers in the microprocessor. Other components, such as

the data buses and control signals that formed interconnections

between the registers, were constructed as a Boolean combination

of the registers. Although these components were not registers,

they were still controlled by bits within the microinstruction

register. The last step in constructing a digital component was

to individually test it. This was accomplished by loading dummy

values into registers and databuses, setting the microinstruction

register with a suitable value, and manually clocking the digital

78

s:-stem by clicking on the "Calc" item from the Logic Calc Main

Menu. It was very easy to determine if the component was

functioning correctly. By testing individual components in this

manner, the design of the individual components within the digital

system was validated.

The next two subsections detail the construction of two

example components: the program counter and the internal data

bus.

5.1.2.1 EXAMPLE DIGITAL COMPONENT: THE PROGRAM COUNTER

The first component that was developed was the program

counter. A program counter must have the ability to be reset,

increment by one, stay the same, or load a value from the internal

databus for branching. Because its output is used by other

registers using the same clock edge, a dual-rank-register must be

used. The reset signal, set externally, and the last two bits of

the microcode instruction register are used to control the program

counter. With the logic shown by Table 9, the program counter's

cell formula is:

(Dual-Rank-Register Program-Counter (Rising) (Falling)
(Cond ((Reset) 0)

((Microbitp 0) (+ I (PC)))
((Microbitp 1) (IDB)))
(T (PC))))

In this example, the first parameter to dual-rank-

register, "Program-Counter," simply provides a variable name for

79

Reset Sismal Microcode I 1 icocode = t Function

0 X X Reset to Zero
1 0 0 Remain the Same
1 0 1 Increment By One
1 1 X Clock in Internal

Data Bus

TABLE 9. CONTROL OF THE PROGRAM COUNTER REGISTER

Logic Calc to store the output of the first flip-flop of the

register as described in Section 4.5. The next two parameters,

"(Rising)" and "(Falling)," describe when to clock the two flip-

flops used to construct the register. The final argument, the

conditional construct, uses the user-defined function "Microbitp"

and the value of the "Reset" cell to determine what the program

counter should clock in.

To test the program counter, the internal data bus was

loaded with a dummy variable. The microinstruction register was

then set with the decimal values 0, 1, 2, and 3. For each setting

of the microinstruction register, the system was manually clocked

with the "Calc" item on the Logic Calc Main Menu. It was quite

simple to check that the program counter was working correctly.

Thus, its design was validated very rapidly.

5.1.2.2 EXAMPLE DIGITAL COMPONENT: THE INTERNAL DATA BUS

The microprocessor has a single internal data bus as

depicted by Figure 17. The internal data bus was controlled by

J

80

bits 19, 20, and 21 of the microinstruction register. These bits

simply selected which components output was to be gated onto the

internal databus. A slight problem was encountered here in the

construction of the cell formula. The cell formula can easily be

described with a Common Lisp "Case" macro [5,12]. Common Lisp,

however, expands its macros upon evaluation into a form that

optimizes speed and restores this expansion [12]. This results in

a cell formula that is difficult to read and edit. An alternative

cell formula is simply a large conditional statement. Although

the alternative cell formula is detailed and lengthy, its

construction was relatively easy due to the self-documenting

features of the formula. With the logic given in Table 10, the

internal data bus cell formula is:

(Cond ((Microbitn (19 20 21)) (RegA))
((And (Microbitp 19) (Microbitn 20 21)) (RegB))
((And (Microbitp 20) (Microbitn 19 21)) (RegX))
((And (Microbitp 19 20) (Microbitn 21)) (RegY))
((And (Microbitp 21) (Microbitn 19 20)) (EDB))
((And (Microbitp 19 21) (Microbitn 20)) (SP))
((And (Microbitp 20 21) (Microbitn 19)) (PC))
(T (Adder)))

It was simple to test the internal data bus. Because all

registers had been constructed at this point, no dummy values were

needed. The microcode instruction register was simply loaded with

proper values and the spreadsheet manually recalculated to update

the contents of the cell simulating the internal data bus. The '0

contents of the internal data bus could then be checked against

the register identified by bits 19, 20, and 21 of the

't f.* --"

.wu_.nrwiWWW flWf An WnP ,W MJ W'SXWU1VF ,.rIV VUR Wr MYR MaR TLnS a 1-UV -. gndu - X U-

81

Microcode Instruction Internal Data Bus
= o 2 12 Contents

0 0 0 Register A
0 0 1 Register B
0 1 0 Register X
0 1 1 Register Y

1 0 0 External Data Bus
1 0 1 Stack Register
1 1 0 Program Counter
1 1 1 Adder/Subtracter

TABLE 10. CONTROL OF THE INTERNAL DATA BUS

microinstruction register. With these tests, the design of the

internal data bus was validated.

5.1.3 WRITING MICROCODE

After all components were constructed and individually

tested, the microcode was written. This too was an easy process

because of Logic Calc's ability to display a cell's contents in

binary. The microcode consisted of forty-eight instructions, each

twenty-two bits wide. The microcode was stored in cells D9

through D58 as constant cells.

Microinstructions were developed to fetch an individual

macro instruction from memory and to execute each of the macro

instructions. To execute most macro instructions, only one or two

microinstructions were needed. A few macro instructions, however,

required as many as four microinstructions for execution. As each

set of microinstructions was developed for a particular macro

82

instruction, they were manually loaded into the microinstruction

register, and the system was manually clocked. This provided an

easy method for testing of the microcode. These tests validated

the design of both the macro instruction and the set of

microinstructions used to execute the macro instruction.

5.1.4 THE MICROCONTROLLER

The final element to be developed for the microprocessor

was the micrcontroller. A Logic Calc driving program was utilized

to simulate the microcontroller and drive the clock. The code

for this program was simply added to that already written for cell

naming and testing described in Section 5.1.1. The code simply

initializes the program counter to zero by loading a value of zero

into Cell A6 which acts as a Reset signal. Next, the fetch-

execute cycle of the microprocessor is initiated. The

microcontroller simply loads microcode to fetch a macro

instruction from memory and then, based on the contents of the

macro instruction register and the status register, loads

microcode to execute the macro instruction. Between each portion

of this fetch-execute cycle, the driving program cycles the clock

by evaluating the Logic Calc function "Calc" four times. This

non-overlapped fetch-execute 4.ycle continues until the instruction

register is loaded with a macro instruction of 0. This is the

opcode for Halt. At this point, the driving program terminates.

, . . 4,., o , d.' ,- - ...,.. • *..~.. ,.. . . . -,..

83

The complete Logic Calc driving program for this

microprocessor is listed in Appendix B.

5.2 FINAL TESTING OF THE MICROPROCESSOR

Due to the stepwise-refinement design techniques offered

by Logic Calc, a good bit of testing and validation had already

been accomplished during the design of the microprocessor;

therefore, final testing was approached with confidence.

First, the driving program was modified slightly to allow

various settings of the stepping of the microprocessor's clock.

With this modification, it was possible to select from a menu

single step, multiple steps, or full speed operations of the

microprocessor clock. If full speed operations was selected,

interim results are not displayed. This is accomplished with the

"no-redisplay" keyword in the "Calc" function. By controlling the

stepping of the clock in this manner, testing could be

accomplished at various levels of detail.

Next, single instructions were loaded in cells that

functioned as memory locations. The driving program was then

executed to drive the clock in a single step mode and function as

the microcontroller. Interim results were checked between each

machine cycle.

With every macro instruction checked individually, memory

was next loaded with simple sequences of instructions. The

driving program was executed to drive multiple steps of the clock.

84

This method of testing was similar to setting a breakpoint with a

debugger. With this method of testing, it was easy to follow the

progress of the instruction sequence by watching key components

such as the program counter, but only the final result could be

checked in detail. Still, this was an effective means of testing.

Finally, a few programs were written that used a full

spectrum of the macro instructions. These programs were run at

full speed so interim results were not checked. The programs

consisted of simple multiplication by addition, division by

subtraction and squaring integers. In addition to the single-

stepped and multiple-stepped tests, these full-speed programs

validated the design of the microcontroller and the overall

performance of the microprocessor.

Because of the high amount of looping in the full-speed

programs, these tests were quite long, sometimes requiring hours

to complete. For a program to square the numbers from one to ten,

the microprocessor utilized 781 clock periods. As described in

Section 4.4, Logic Calc requires four four spreadsheet

recalculations to simulate one clock period; therefore, Logic Calc

performed this simulation by performing 3124 spreadsheet

recalculations (781 X 4). Logic Calc used 25 formula cells to

simulate the microprocessor and 24 formula cells to simulate 24

locations in RAM memory resulting in a total of 49 formula cells.

It accomplished the simulation in one hour and three minutes A'

,
,%

85

giving it a simulation speed of .21 clock-periods/second and a

formula recalculation rate of 40.5 formulas/second. The

simulation speed could be improved by eliminating the twenty-four

RAM formula cells and running programs which used only ROM memory.

The speed for these ROM-only simulations was .42 clock-

periods/second with a similar formula recalculation rate of 41.8

formulas/second.

Although a direct comparison between simulation speeds

between Lotus 1-2-3 and Logic Calc was not made, it was noted

that Lotus 1-2-3 has a significantly higher formula recalculation

rate for identical cell formula entries. This apparent

performance advantage of Lotus 1-2-3 is offset by the fact that

Lotus 1-2-3 lacks the Boolean operations and specialized functions

of Logic Calc. Lotus 1-2-3 therefore requires more formula cells

than Logic Calc to design a digital system, resulting in

simulation speeds similar to Logic Calc. As a crude comparison, a

numeric coprocessor was designed with Lotus 1-2-3 during previous

research at the University of Texas (13]. The complexity of this

coprocessor was similar to that of the 32-bit microprocessor

designed with Logic Calc. The Lotus 1-2-3 design, however,

required 107 formula cells and ran on an IBM PC AT with a

simulation speed of .61 clock-periods/second. The Lotus 1-2-3

simulation speed for the coprocessor is faster than that of Logic

Calc because the Lotus 1-2-3 design utilized a "clock" cell with

N N

86

only two states: high and low. If the Lotus 1-2-3 design was

simulated with a more precise four-state clock such as that used

in the Logic Calc design, the simulation speeds of the two spread-

sheets would be approximately the same.

,%

u~af , a -ru u, ~ iis A '5 aMNs-UMNs. A" n U-W IFRI 1 WIM ' .r. v.aw m. -L- ' W .1 nt r I r

CONCLUSION

6.1 SUMMARY OF RESULTS

Logic Calc was developed to be used a design tool for

digital systems. It was intended to eliminate the shortcomings of

financial spreadsheets when used as design tools. Each of the

improvement areas listed in Section 1 is summarized:

1. A Maximum value for fixed-point integers. The Lisp
programming language eliminated this shortcoming.
Lisp allows integers to be any size by providing
software to represent and operate on integers that
are larger than one data word. Integers larger than
32 bits are called expressed as "Bignums" in Lisp.
Software arithmetic routines are provided by Lisp to
allow bignums to maintain the same precision as
fixed-point integers.

2. Fixed size integers. Logic Calc eliminated this
shortcoming by providing a bit property for each
cell. This provided for a more precise mapping of
digital hardware onto a spreadsheet.

3. Lack of Boolean operations. Lisp eliminated this
shortcoming. In Lisp, a full set of Boolean
operations is available, including operations at the
bit level.

4. Lack of binary and hexidecimal display. Logic Calc
eliminated this shortcoming by providing both of
these display formats.

5. Inability to simulate some key digital components in
a single cell. Logic Calc offers much improvement in
this area, by providing the "Dual-Rank-Register"
function and allowing the user to write his own
functions. Many of the components that require
several cells in a financial spreadsheet can be
expressed as a single cell in Logic Calc.

87

% % % %

88

6. Slow and cumbersome programatic operation of the
spreadsheet. Logic Calc's method of using a separate
driving program is superior to Lotus macros in that
it offers full screen editing features, is highly
flexible, and can be compiled. A direct comparison
of speed for programmatic operation of Logic Calc and
Lotus 1-2-3, however, shows that Lotus 1-2-3 is
slightly faster. This is probably due to the fact
that Logic Calc does not compile its cell formulas
whereas Lotus 1-2-3 partially compiles its cell
formulas. This item is addressed in the next
subsection.

7. No modification capabilities. Logic Calc eliminated
this shortcoming. High-level-language source code is
obtainable for Logic Calc. It should also be
relatively easy to modify because Logic Calc is
written in Common Lisp, the same language that the
user utilizes to write cell formulas, the same
language that the user utilizes to write a Logic Calc
driving program.

The design of the microprocessor presented in Section 5

was both easy and fast. The ease of testing was due to Logic

Calc's interactive nature, self-documenting capabilities, and

highly visible results. It took only three days to design and

partially test the microprocessor. This design process was a

simple, straight-forward stepwise-refinement of the graphical

depiction of the design. Digital components were individually

designed, tested, and validated using dummy variables for

components not yet designed. As the number of validated

components grew, the number of dummy variables used to represent

them decreased. Eventually, all components were individually

designed, tested, and validated, and there were no dummy

variables. Full scale testing was next and was also was quite

--. ~-% ySA W. AS f

89

rapid: the full scale tests took several hours, but could be run

overnight. These test were sufficient to validate the design of

the microprocessor. The resulting design, completely validated,

could be passed down to the next level of design with sufficient

detail and documentation to ensure that no design errors would be

passed down.

Logic Calc, therefore, was proven to be an effective and

efficient design tool for digital systems. It presents an ability

to completely validate a design at the architectural level, the

highest level of design. Its use of well-proven computer science

concepts of interaction, visibility, self-documentation, and

stepwise-refinement of the problem enable it to be used with the

greatest of ease.

6.2 FUTURE RESEARCH

Logic Calc, being a prototype, is not perfect A

changes to Logic Calc could improve its use as a dir,' &

tool:

1. Currently in Logic Calc. in orde-
formula cell, it must be -,
Although the previous form .a
process is frustrating a7, e--
feature formula editor 1 7
could be designed to e' . .

2. Currently in Log. a
a form such t."b
executed as a .,

Logic (a'.

S-Aifl 29 LOGIC CALC A DESIGN TOOL FOR DIGITAL SYSTEMS(U) RIR 2/2
FORCE INST OF TECH URIGHT-PATTERSON RFB OH
C D ROSENBERGER AUG 87 AFIT/CI/NR-8?-55T

UNCLRSSIFIE F/O 12/5 NL

lllmolllllllll
IIIIIIIII

91-4

90

need the ability to reconstruct the original cell
formula for editing purposes.

3. Certain errors in cell formulas, such as adding nil
to an integer, are identified by the Explorer
debugger. Although the Explorer debugger prints out
detailed error messages and is well-documented, a
better error-handler could be developed from within
Logic Calc. This error-handler could simply point
out errors by displaying sErrors in cells that
contain formula errors. This method, patterned after
error-handling in Lotus 1-2-3, would allow the user
the capability to rapidly detect the source of errors
without leaving Logic Calc and without learning the
operation of the Explorer debugger.

4. Although the file operations in Logic Calc are
adequate for most applications, it would be useful to
add more extensive file operations similar to those
offered by Lotus 1-2-3. Additional file operations
to save, retrieve, and combine portions of
spreadsheets would allow merging of spreadsheets.
This merging of spreadsheets can be used to test
alternate hardware or software within the same
design. Similarly, these additional file operations
offer an ability to design a new digital system by
assembling parts of digital systems previously
designed on Logic Calc. Assembling previously
designed and tested parts in this manner offers a
fast and flexible technique to the Logic Calc design
process.

Logic Calc, patterned after Lotus 1-2-3, retained many

general purpose features of Lotus 1-2-3. Another version of Logic

Calc, further specialized for design of digital systems, could be

designed. Some of the features suggested for this second version

are:

1. A simulation of the digital system clock from within
Logic Calc. By including global variables and
functions describing the state of a clock simulated
within Logic Calc, digital components could be
constructed on the spreadsheet without first
constructing a clock and the functions used to test

91

its state. The display should be modified to show
the state of the clock. Including this internally-
simulated clock would also provide a significantly
faster spreadsheet recalculation due to the use of
global constructs to simulate the clock.

2. Special purpose cell types. In addition to the cell
types already included in Logic Calc (null, constant,
text, and formula), it would be valuable to include
special purpose cell types that simulate specific
digital components such as registers, flip-flops,
multiplexors... The user would then need to describe
only the input into the component. Further
simplification of cell construction could be achieved
by "prewirings those special purpose cell types that
require a clock to the internally-simulated clock
described above. This method of cell construction
would be superior to use of functions such as "Dual-
Rank-Register" and its bulky list of parameters.

3. Special purpose grouping of cells. Primarily to
simulate a memory system, it would be valuable to
group cells as one component. Currently in Logic
Cale, it is necessary to have a formula for each cell
functioning as a single address location vithin a
memory system. This greatly adds to the number of
cells that must be recalculated during spreadsheet
recalculation. Many cell formulas could be eliminated
if a grouping of cells could operate under a single
formula. A special purpose grouping of cells could
provide this feature and thereby speed up spreadsheet
recalculation.

Another area for future research in this area would be to

design a digital system more complex than the microprocessor

presented in Section 5. It would be valuable to test Logic Calc's

capabilities to design a digital system that uses parallel or

pipelined architectural features.

Logic Calc also offers the capability to develop new

softvare on existing digital systems. Microstore could be quickly

changed by replacing those cells that function as microstore with

92

new cells representing the new wicrostore. Assemblers and loaders

could be developed as Logic Caic driving programs to automatically

generate binary code from assembly language mneonics and load the

binary code in memory. A debugger could also be written as a

Logic talc driving progra to run the simulations. Logic Calc

could be used to keep track of machine cycles, memory bandwidth,

frquency of branching, and other such parameters that are

measurements of performance when developing now software. It

would be valuable to evaluate Logic Calc's ability to perform as

such a software development tool.

A final area for future research would be the development

of an expert graphics editor that could interface to the front end

of Logic Calc. With such a device, digital systems could be

designed by developing a graph such as shown in Figure 5 on an

expert machine. The graphics editor could then make Logic Calc

cell entries automatically. This graphics approach to digital

design would be quite interesting.

Interested readers can contact Professor Harvey Cragon at

the Electrical Engineering Department, University of Texas at

Austin, for further information and a copy of Logic Calc.

APPENDIX A: LOGIC CALC SOURCE CODE

LOGIC-CALM

A SPREADSHEET PROGRAM DEVELOPED BY:

GLENN D. ROSENBERGER, CAPTAIN USAF
112 HABICHT STREET, JOHNSTOWN PA 15906
814-536-1089

DEVELOPED AT THE UNIVERSITY OF TEXAS, AUSTIN
IN THE SPRING SIMESTER, 1987

LOGIC CALC WAS WRITTEN TO BE USED AS A INTERACTIVE DESIGN TOOL
FOR DIGITAL SYSTEMS. THE PROGRAM CONSTRUCTS AN ARRAY OF CELL
OBJECTS AND THEN ALLOWS THE USER TO MANIPULATE PROPERTIES OF
THE OBJECTS VIA AN INTERACTIVE MOUSE AND KEYBOARD INTERFACE
SIMILAR TO MOST SPREADSHEETS. BY CONSTRUCTION OF FORMULAS THAT
SIMULATE DIGITAL LOGIC UNITS, THE SPREADSHEET CAN SIMULATE MOST
DIGITAL SYSTEMS. DURING EACH SPREADSHEET RECALCULATION. THE
FORMULAS ARE REEVALUATED AND EACH CELL IS SET TO ITS NEW VALUE.
THIS METHOD OF RECALCULATION SIMULATES THE FUNCTION OF A CLOCK
IN A DIGITAL SYSTEM.

THE PROGRAM IS CONSTRUCTED NEARLY ENTIRELY OF LISP METHODS AND
; FORMULAS, EACH OF WHICH IS DOCUMENTED IN SUFFICIENT DETAIL.
; MOST FUNCTIONS ARE USED BY THE SPREADSHEET PROGRAM ITSELF, BUT
; A FEW ARE DESIGNED TO BE ENTERED INTO A CELL AS A FORMULA CALL,

AND A FEW ARE DESIGNED TO BE USED IN A USER-DEFINED DRIVER
PROGRAM. THIS DRIVER PROGRAM CAN BE USED TO RECALCULATE THE
SPREADSHEET, AS WELL AS TEST AND LOAD CELL CONTENTS AND THUS
SIMULATE A CONTROLLING PROCESSOR.

THE MAIN-PROGRAM LOOP RESIDES IN THE FORMULA "RESTART". THE
PROGRAM CALLS OTHER FUNCTIONS FROM THIS LOOP BASED ON THE
USER'S INPUT. TO EXIT THE EDITING MODE THAT THIS MAIN PROGRAM
PROVIDES, THE USER SHOULD CLICK ON THE 'EXIT" ITEM ON THE
PROGRAM'S MAIN MENU. SUBSEQUENT REENTRIES CAN BE ACCOMPLISHED
BY CALLING THE FUNCTION "RESTART".

SPREADSHEET FILES CAN BE STORED AND READ FROM THE LOCAL
MACHINE'S LOGIC-CALC DIRECTORY USING THE "FILES" MENU ITEM.

93

94

; The cell object is the primary data object of the spreadsheet.
; Property Definitions:

Type : empty, constant, string, or formula.
Value: the value of this cell, this property may be either

an integer or a string.
Formula: the lisp formula used to obtain the value (or nil

if not a formula cell.)
Bits: the maximum number of bits that are used to hold the

; cell's value. If the value exceeds this amount, the
higher order bits are stripped. This property allows

; the spreadsheet to closely simulate a digital system
by providing a specification on the size of a
digital component (in bits). The maximum value for

; bits should be 127 without modifying the program.
; Recalc: this is a boolean variable that is set in formula

cells during recalculation. It is necessary to
permit access to other cells in an arbitrary manner,
and allow circular references.

; Changed-value: this boolean property is maintained in
order to speed up the display process. During recal-

; culation, only cells whose value has changed are
; redisplayed.
; Output-display: X hexidecimal, B binary.
(defflavor cell ((value 0) (formula nil) (bits 32)(recalc nil)
(type 'empty)(changed-value t) (output-display 'X)) ()
:gettable-instance-variables :settable-instance-variables
inittable - instance -variables)

;Global variables follow with their definition and use

(defvar max-number-of-columns 300
"the maximum number of columns in any spreadsheet')

(defvar max-number-of-rows 400
"the maximum number of rows in any spreadsheet*)

(defvar number-of-rows 10
"the current number of rows in the working spreadsheet")

(defvar number-of-columns 20
"the current number of columns In the working spreadsheet")

(defvar first-display-row 1
"the first row printed when the spreadsheet is in view")

(defvar first-display-column 1
"the first column printed when the spreadsheet is in view")

(defvar last-display-row :unbound
"the last row displayed. Bound in print-spreadsheet')

(defvar last-display-column :unbound
"the last column displayed. Bound in print-spreadsheet")

(defvar user-input :unbound

95

The user's input to the spreadsheet during editing)
(defvar formula-list nil

"a list cell indices for all cells that contain formulas")

;the primary data array is a global variable named spread:
(defbar spread (make-array (list (+ 1 number-of-rovs)

(+ I number-of-columns)))
"the array of cells that comprise the working spreadsheet")

;the user interface for data display is developed as a
; souse sensitive window:
(defflavor spreadsheet-window ()(tv:basic-mouse-sensitive-items

tv: truncating-window tv: streau-mixin))

;four item-type association lists are used with the mouse
sensitive window

(defvar edit-list '((cell-type cell-view
"Left: View this cell Right: Menu of Cell Operations"

("MENU OF CELL OPERATIONS" :no-select t)
("View Cell" :value cell-view

:documentation "View this cell')
("Edit Cell" :value cell-edit

:documentation "Edit this cell")
("Change Cell Size" :value cell-size

:documentation "Change Size of size in bits")
("Change Output Display" :value cell-output-display

:documentation "Change the output display of this cell")
("Move Cell" :value cell-move

:documentation "Move Cell to New Location")
("Copy Cell" :value cell-copy

:documentation "Copy Cell to Another Location")
("Erase Coll" :value cell-empty :documentation "Erase Cell"))

(row-type insert-row "Left: Insert a Row
Right: Menu of Row Operations"

("Insert Row" :value insert-row
:documentation "Insert a Row at this Location")

("Delete Row" :value delete-row
:documentation "Delete this Row")

("Move Row" :value move-row
:documentation "Move all Cells in this Row to a New Row")

("Copy Row" :value copy-row :documentation
"Copy all Cells in this Row to another Row"))

(column-type width
"Left: Change Column Width
Right: Menu of Column Operations"

("Change Column Width" :value width
:documentation "Change Column Width")

("Insert Column" :value insert-column

96

:documentation *Insert a Column at this Location')
('Delete Column" :value delete-column

:documntation .Delete this Column')
(*Move Column' :value move-column

:documentation
'Move all Cells in this Column to a New Column')

('Copy Column" :value copy-column
:docmntation

'Copy all Cells in this Column to another Column')))
"Edit-list is the primary mouse sensitive Ltem-type

association list. Used during edit mode')

(defvar cell-move-copy '((cell-type mark
"Left: Make this cell target location
Right: Select or Abort"

('MENU* :no-select t)
('Select this cell' :value mark

:documentation 'Make this cell target location')
('Abort Nove/Copy Operation" :value abort

:documentation 'Do not perform Move/Copy Operation')))
"Cell-move-copy is a mouse sensitive item type association

list. Used when moving or copying cells')

defvar row-move-copy '((row-type mark
'Left: Make this row target location
Right: Select or Abort'

('MENU" :no-select t)
("Select this row' :value mark

:documentation 'Make this row target location')
('Abort Hove/Copy Operation" :value abort

:documentation "Do not perform Move/Copy Operation')))
"Row-move-copy is a mouse sensitive item type association list.
Used when moving or copying rows')

(defvar column-move-copy '((column-type mark
'Left: Make this column target location
Right: Select or Abort"

('MENU" :no-select t)
('Select this column" :value mark

:documentation 'Make this column target location')
('Abort Move/Copy Operation' :value abort

:documentation 'Do not perform Move/Copy Operation")))
'Column-move-copy is a mouse sensitive item type association

list. Used when movLng/copying columns")

(defvar program- constraint-window
(make- instance ' t : bordered-constraint- frame
, :panes

97

((spreadsheet -pan. spreadsheet -window
:label (:string OLOGIC CALCO

:font fonts:bigfnt :centered :top)
:blihker-p nil
:*an~-tyesl edit-list

(iain-meau-pane tv: command-mn
item- list

(("File" :value file :documentation
"Read or Write Spreadsheet Files")

(*Size" :value size
:documentation "Change Worksheet Size")

(*Go To" :value go-to :documentation
"Show a different region in Spreadsheet")

("Calculate" :funcall cale :documentation
"Make a single Worksheet Recalculation")

("Exit* :value exit
:documentation "Exit Logic Cabc"))

.default-font font. :courier
:label (:string "MAIN HM"

:font fonts:courier :centered))
(interaction -window-pane tvwindow

:label (:string "INTERACTION WINDOW"))
':constraints
'((main .((spreadsheet-pane

interaction-window-pane main-menu-pane)
((spreadaheee-pan. 530))
((main-menu-pane :ask :pane-size))
((interaction-window-pane :even))))))

"Program-constraint-window is a constraint window for the
spreadsheet, Interaction-window and menu. This variable
describes the size-and position of these three windows")

(defvar spreadsheet (send program-constraint-window
':get-pane 'spreadsheet-pane)

"spreadsheet gives access to the spreadsheet window in the
program-constraint-vindow")

(defvar interaction-window (send program-constraint-window
':get-pane 'interaction-window-pane)

"interaction-window gives access to the interaction-window in
the program- constraint -window")

(defvar main-menu (send program-constraint-window
':get-pane 'main-menu-pane)

"main-menu gives access to the main-menu window In the
program-constraint -window")

2N e

98

(defvax program-jo-buffer (tv:make-io-buffer 500.)
"the programas lo buffer")

;the column object is developed to hold three properties:
; letter: gives unique column identifier to each column

width: the printed width of the column
; position: the x-coordinate on the screen for the beginning

of the column. This is needed during redisplay of
individual items.

(defflavor column-flavor (letter (width 20) position)()
:gettable-instance-variables : settable- instance-variables
:inittable- instance -variables)

(defvar column (make-array (+ 1 max-number-of-columns))
"an one dimensional array of column objects. Initialized
in the restart function.")

;when invoked the make-constant method sets the cell type to
; 'constant and the value to the provided input-value.
(defmethod (cell :make-constant) (input-value)
(let ((cell-bits))
(send self :set-type 'constant)
;Right justify cell's value to the specified number of bits.
; The complicated shifting for large cell sizes is necessary
; because byte operations only work with fixnums as byte
; specifiers.
(send self :set-value

(cond ((> 64 (setq cell-bits (send self :bits)))
(ldb (byte cell-bits 0) input-value))
(t (+ (ash (ldb (byte (- cell-bits 63) 0)

(ash input-value -63)) 63)
(1db (byte 63 0) input-value)))))

(send self :set-changed-value t)
(send self :set-formula nil)))

;when invoked the make-text method sets the cell type to 'text
; and the value to the provided input-value
(defuethod (cell :make-text) (input-value)

(send self :set-type 'text)
(send self :set-value input-value)
(send self :set-changed-value t)
(send self :set-formula nil)
(send self :set bits 32))

;when invoked the copy method sets tthe cell's type, value,
; formula, bits, and recalc properties to the same values as the
; properties of the cell located at i J.
(defmethod (cell :copy-cell) (i J)

99

(seum self :set-type (send (aref spread I J) :type))
(send self :set-value (send (aref spread i J) :value))
(send self :set-felmula (semi (aref spread I J) :formula))
(send self :set-bitu (send (aref spread I J) :bits))
(send self :set-rscalc (send (aref spread I J) :recalc))
(send self :set-chawged-value t))

;when invoked the make-formula method sets the cell type to
; 'formula and the formula to the provided Input-formula.
(defuethod (cell :make-formula) (input-formula)

(send self :set-type 'formula)
(send self :set-formula input-formula)
(send self :set-recalc nil)
(send self :set-changed-value t))

(defun column-string (j)
"Returns a string corresponding to the supplied column number"
(let ((first) .(second))
(cond ((< j 27)(aake-string 1 :initial-element (+ 64 j)))

(t (progn (multiple-value-setq (first second)
(truncate j 26))

(cond ((equal second 0)
(progn (setq first (- first 1))

(setq second 26))))
(concatenate 'string

(make-string 1 :initial-element (+ 64 first))
(make-string 1

:initial-element (+ 64 second))))))))

;the next four functions are called to prompt the user for more
; data in the development of different types of cell objects.
; The program's formula list is updated constantly.
(defun make-epty-cell (i J)
"makes the cell at location I j empty by simply creating
a new cell object"
(aset (make-instance 'cell) spread I J)
(setq formula-list

(remove (list i J) formula-list :test 'equal)))

(defun make-constant-cell (i J)
"prompts the user for an input and makes the cell at location

(i J) a constant cell if the user supplied a valid value"
(lot ((input-value))
(cell-viev i J)
(write-string "Enter decimal intdger for this cell

(Prefix: #X: hex, #0: octal, #B: binary):
interaction-window)

(tv: turn-on-sheet-blinkers interaction-window)

100

(setq input-value (read-from-string
(read-line interaction-window) nil 0))

(cond ((integerp Input-value)
(prop

(setq formula-list
(remove (list I J) formula-list :test *equal))

(send (aref spread I J) :make-constant input-value)))
(t (send interaction-window :beep)))))

(defun make-string-cell (i J)
"prompts the user for an input and makes the cell at location
(i J) a text cell if the user supplied a valid value"

(let ((input-value))
(cell-view i J)
(write-string "Enter text entry for this cell:

interaction-window)
(tv: turn-on-sheet-blinkers interaction-window)
(setq input-value (read-line interaction-window))
(setq formula-list

(delete (list i J) formula-list :test 'equal))
(send (aref spread i J) :make-text input-value)))

(defun make-formula-cell (i J)
"prompts the user for an Lisp formula input and makes a formula
cell at location (i J)"
(let ((input-value))
(cell-view i J)
(write-line "Enter lisp formula for this cell:

interaction-window)
(tv: turn-on-sheet-blinkers interaction-window)
(setq input-value

(read-from-string (read-line interaction-window) nil nil))
(cond ((listp input-value)

(progn
(setq formula-list

(delete (aref spread i J) formula-list))
(send (aref spread i J) :make-formula input-value)
(evaluate-cell i J)
(setq formula-list (cons (list i J) formula-list))))

(t (send interaction-window :beep)))))

(defun format-cell (i J)
"returns a string that represents the cell's value. If the
value is a text string, it is right-trimmed to fit in the
current column width. If the value is an integer, but too
large to be displayed properly, a string of astericks is
returned."
(let ((printed-width)

101

(display)
(column-width (send (aref column J) :width))
(value (send (aref spread i J) :value)))

(case (send (aref spread i J) :type)
('empty (make-string column-width :initial-element 32))
('text (subseq (format nil *-VA" column-width value)

0 column-width))

(otherwise
(cond ((integerp value)

(progn (setq printed-width
(case (setq display (send (aref spread i J)

:output-display))
('X (ceiling

(send (aref spread i J) :bits) 4))
('B (send (aref spread i J) :bits))))

(cond ((<- printed-width column-width)
(case display ;hex or binary

('X (format nil "-VA" column-width
(format nil "-V,'OX"
printed-width value)))

('B (format nil "-VA" column-width
(format nil "-V,'OB"
printed-width value)))))

(t (make-string column-width

:initial-element 42)))))
(t (subseq (format nil *-VA" column-width value)

0 column-width)))))))

(defun print-spreadsheet ()
"the entire spreadsheet is reprinted, including row and column
numbers. This is a slower print function, but must be used if
column width have changed or the user wants to view another
portion of the spreadsheet."
(let ((display-row 2))
(send spreadsheet :select)
(send spreadsheet :clear-screen)
(send spreadsheet :increment-cursorpos 10 0 :character)
(setq last-display-row

(min (+ 35 first-display-row) number-of-rows))
(block column-letters
;print out column headers until there is no more room
or no more columns
(loop for j from first-display-column to number-of-columns do

(if (< (+ (send (aref column J) :width)
(send spreadsheet :read-cursorpos :character)) 160)

(progn (send (aref column J) :set-position
(send spreadsheet :read-cursorpos :character))
(send spreadsheet :item 'column-type

102

(list J) (send (aref column J) :letter))
(send spreadsheet :increment-cursorpos

(- (send (aref column J) :width) 1)
0 :character)

(setq last-display-column J))
(progn (setq last-display-column (- j 1))

(return-from column-letters)))))

;print each cell as a mouse sensitive item
(loop for i from first-display-row to last-display-row do

(send spreadsheet :set-cursorpos 3 display-row :character)

(send spreadsheet :item 'row-type (list i)
(format nil "-A" i))

(loop for J from first-display-column to
last-display-column do

(send spreadsheet :set-cursorpos

(send (aref column J) :position) display-row :character)
(send spreadsheet :item 'cell-type (list i J)

(format-cell i J))

(send (aref spread i J) :set-changed-value nil))
(setq display-row (+ 1 display-row)))

(send interaction-window :select)

(tv:turn-off-sheet-blinkers interaction-window)))

(defun print-spreadsheet-changed-items ()

"A faster print function. This can reprint the updated cells
without reprinting column letters and row numbers. Because

values are bound for last-display-row and last-display column

are bound in print-spreadsheet, no computation of these values

is necessary."
(let ((display-row 2)(output-string))
(send spreadsheet :select)

;print each cell that has changed-value set to true and

;update changed value flags

(loop for i from first-display-row to last-display-row do

(loop for j from first-display-column to
last-display-column do

(cond ((send (aref spread i J) :changed-value)
(progn

(send (aref spread i j) :set-changed-value nil)

(setq output-string (format-cell i J))

(send spreadsheet :set-cursorpos
(send (aref column J) :position)

display-row :character)

(send spreadsheet :clear-string output-string)
(send spreadsheet :item 'cell-type

(list i J) output-string)))))

103

(setq display-row (+ 1 display-row)))
(send Interaction-iidow :select)
(tv: turn-off-sheet-blinkers Interaction-wndow)))

(defun row&col (cell)
"returns two values corresponding to the indices of the cell
name entered as an argument. If the cell name does not
correspond to a valid cell, nil is returned. This function is
called often and designed for speed."
(let* ((cell-name (format nil "-A" cell))

(column-number (- (char-code (char cell-name 0)) 64))
(possible-column-number)
(start-integer 1)(row-number))

(cond ((or (< (length cell-name) 2)
(> 1 column-number) (< 26 column-number))

(progn (send interaction-window :beep)
(return-from row&col nil))))

;test for second character to be a letter
(setq possible-column-number

(- (char-code (char cell-name 1)) 64))
(cond ((and (< 0 possible-column-number)

(> 27 possible-column-number))
(progn (setq column-number (+ possible-column-number

(* 26 column-number)))

(setq start-integer 2))))
(setq row-number

(parse-integer cell-name :start start-integer
:Junk-allowed t))

(cond ((and (integerp row-number) (plusp row-number)
(<- row-number number-of-rows)
(plusp column-number)
(<- column-number number-of-columns)
(<- column-number number-of-columns)
(<- row-number number-of-rows))

(values row-number column-number))
(t (progn (send interaction-window :beep)

(return-from row&col nil))))))

(defun evaluate-cell (i J)
"When called to evaluate a cell, this function evaluates the
form stored in cell (i J) if the cell type is a formula. It
must first test and set the recalc flag to true, so that
circular references will be handled correctly. The specified
byte is removed from the computed value and the cell's value
is updated to match this byte."
(let ((previous-value) (computed-value) (new-value)(bits))
(cond ((and (equal 'formula (send (aref spread i J) :type))

(not (send (aref spread i J) :recalc)))

[A

104

(progn
(send (aref spread i J) :set-recalc t)
(setq previous-value

(seid (aref spread i-J) :value))
(setq computed-value

(eval (send (aref spread i J) :formula)))
(cond ((integerp computed-value)

;remove byte specified by digits.
(progn

(cond ((> 64 (setq bits
(send (aref spread i J) :bits)))

(setq new-value (ldb (byte bits 0)
computed-value)))

(t (setq new-value
(+ (ash (1db (byte (- bits 63) 0)
(ash computed-value -63)) 63)
(ldb (byte 63 0)
computed-value)))))

(send (aref spread i J) :set-value new-value)
(cond ((not (equal previous-value new-value))

(send (aref spread i J)
:set-changed-value t)))))

(t (progn (send (aref spread i J)
:set-value computed-value)

(send (aref spread i J)
:set-changed-value t)))))))))

(defun cell-view (i J)
"Allows the user to view the cell that was clicked upon"
(let ((type (send (aref spread i J) :type))

(output-value (send (aref spread i J) :value)))
(send interaction-window :select)
(send interaction-window :refresh)
(send interaction-window :clear-screen)
(write-string "Cell " interaction-window)
(write-string (column-string J) interaction-window)
(prinl i interaction-window)
(write-string 0: Type: " interaction-window)
(prinl type interaction-window)
(fresh-line interaction-window)
(write-string "Value: " interaction-window)
(prinl output-value interaction-window)
(cond ((not (stringp output-value))

(progn
(write-string 0 (Decimal), " interaction-window)
(format interaction-window "-X (Hexidecimal)"

(send (aref spread i J) :value))
(write-string " Bits: * interaction-window)

Z6Z

105

(prini (send (aref spread I J) :bits)
Interaction-window)

(writ*-string " Output display: " Interaction-window)
(case (send (aref spread I J) :output-display)

('X (write-string "exidecimal" interaction-window))
(' (write-string "Binary" interaction-window))))))

(cond ((equal 'formula type)
(progn (fresh-line interaction-window)

(write-string *Formula: I interaction-window)
(print (send (aref spread i J) :formula)

interaction-window))))
(fresh- line Interaction-window)
(tv: turn-off-sheet-blinkers interaction-window)))

(defun cell-edit (i J)
"Allows the user to edit the cell clicked upon or exit if
no menu choice is made"
(case (tv:menu-choose

'(('Empty Cell" :value empty :documentation
'Make this cell empty")

('Constant Cell" :value constant :documentation
"Hake this cell a constant')

('Text Cell" :value text :documentation
"Hake this cell a Text Cell")

("Formula Cell" :value formula :documentation
"Hake this cell a Formula cell")))

(empty (make-empty-cell I J))
(constant (make-constant-cell i J))
(text (make-string-cell i J))
(formula (make-formula-cell I J)))

(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers interaction-window)
(print - spreadsheet- changed- items))

(defun cell-size (i J)
"Allows the user to change the number of bits for this cell.
This is the size of the byte that is removed from the cell
during each computation."
(let ((input-value))
(cell-view i J)
(write- string

"Enter the size in bits for this cell (decimal value): "
interaction-window)

(tv: turn-on-sheet-blinkers interaction-window)
(setq input-value

(read-from-string (read-line interaction-window) nil nil))
(cond ((equal 'text (send (aref spread i J) :type))

(send interaction-window :beep))

q, M I., 19m

106

((not (intogerp input-value))
(send interaction-windov :beep))

((not (plump input-value))
(send interaction-window :beep))

;127 io sx value for bits due to program design
((> 127 input-value)
(progn

(send (aref spread I J) :set-bits input-value)
(send (aref spread I J) :set-value

(cond ((> 64 input-value)
(1db (byte input-value 0)

(send (aref spread I J) :value)))
(t (+ (ash (1db (byte (- input-value 63) 0)

(ash (send (aref spread I J) :value)
-63)) 63) (1db (byte 63 0)
(send (aref spread I J) :value))))))

(send (aref spread i J) :set-changed-value t)
(print-spreadsheet-changed- items)))

(t (send Interaction-window :beep)))
(send interaction-window : clear-screen)
(tv: turn-off-sheet-blinkers interaction-window)))

(defun cell-output-display (I J)
"The user can set the cell display to hexidecimal or binary"
(cell-view I j)
(case (tvmunu-choose

'((*CELL OUTPUT DISPLAY" :no-select t)
(liexidecinal :value hex :documentation

"Set output display to hoxidecinial")
("Binary" :value binary :documentation

"Set output display to binary")))
(hex (send (aref spread I J) :set-output-display IX))
(binary (send (arof spread I J) :set-output-display 'B)))

(send (aref spread i J) :set-changed-value t)
(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers Interaction-window)
(print-spreadsheet-changed- item))

(defun get-cell-location-or-abort ()
"Used during move and copy (of cells). Returns a true if the
user clicks on a cell. Also allows the Go-To function to be
performed to allow user access to the entire spreadsheet.
Returns a nil if a character is typed or the Abort selection
is chosen."
(send spreadsheet :set-item-type-alist cell-move-copy)
(loop (sotq user-input (send spreadsheet :any-tyi))

(cond ((not (listp user-input))
(return-from get-cell-location-or-abort))

107

((equal :menu (car ussr-input))
(cond ((equal 'go-to (caddr(cadr user-input)))

(funcall 'go-to))))
((equal : type*out-execute (car user-input))
(cond ((equal 'mark (cadr user-input))

(return-from got-cell-location-or-abort t))
((equal 'abort (cadr user-input))
(return-from get-cell-location-or-abort)))))))

(defun Coll-move (I j)
"Moves cell (I J) to the location specified by the user.,
(cell-view i J)
(write -string

"Click Left on the New Location for this Cell
or Type any Character to Abort Rovew interaction-window)

(cond ((get-cell-location-or-abort)
(progn

(aset (aref spread i J) spread
(car (caddr user-input))(cadr (caddr user-input)))

(send (aref spread (car (caddr user-input))
(cadr (caddr user-input))) :set-changed-value t)

(cond ((equal 'formula (send (aref spread i J) :type))
(nsubstitute (caddr user-input) (list I J)

formula-list :test 'equal)))
(ast (make-instance 'cell) spread L J)
(print-spreadsheet-changed-Item)))

(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers interaction-window))

(defun cell-copy (i J)
"Copies cell (i J) to the location specified by the user."
(cell-view i j)
(write-string OClick Left on Location for a Copy of this Cell

or Type any Character to Abort Move" interaction-window)
(cond ((get-cell-location-or-abort)

(progn
(send (aref spread (car (caddy user-input))

(cadr (caddr user-input))) :copy-cell i J)
(cond ((equal 'formula (send (aref spread i J) :type))

(setq formula-list (cons (caddr user-input)
formula-list))))

(print-spreadsheet-changed-items)))
(t (send interaction-window :beep)))

(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers interaction-window))

108

(defun cell-empty (U D.
82rases. cell (I J) and repaces it with an empty one."
(make-empty-cefl I j)
(print- spreadsheet-chenged- items)
(send interaction-vindow :clear-screen)
(tv: turn-off-sheet-blinkers interaction-window))

(defun insert-row (inserted-i notused)
"A empty row is inserted at the inserted-i location and the
rest are moved down. The bottom-most roy is removed. The
formula list must be updated.'
(cond ((tv:menu-choose

'((-CONFIRM YOU WISH TO INSERT A ROW" :no-select t)
("Yes" :value t :documentation

"Confirm desire to insert row")
("Now :value nil :documentation

"Abort row insertion")))
(progn

(loop for j from 1 to number-of-columns do
(setq formula-list (remove (list number-of-rows J)

formula-list :test 'equal)))
(loop for i from number-of-rows

downto (+ 1 inserted-i) do
(loop for j from 1 to number-of-columns do

(aset (aref spread (- i 1) J) spread i J)
(send (aref spread i .1) :set-changed-value t)
(cond ((equal 'formula

(send (aref spread i J) :type))
(nsubstitute (list i J) (list (- i 1) J)

formula-list :test 'equal)))))
(loop for j from 1 to number-of-columns do

(aset (make-instance 'cell) spread inserted-i D)
(print-spreadsheet-changed-items)))))

(defun delete-row (deleted-i notused)
"The row at deleted-i is deleted and the rest are moved up.
An empty row is inserted at the bottom. The formula list
is updated."

(cond ((tv:menu-choose
'((-CONFIRM YOU WISH TO DELETE A ROW" :no-select t)
(*Yes' :value t :documentation

"Confirm desire to delete row")
("No" :value nil :documentation

"Abort row deletion")))

109

(progn
(loop for j from 1 to nm~b.r-of-colmn do

(setq formula-list (remove (list deleted-I J)
formula-list":test 'equal)))

(loop for I from deleted-i to (- umber-of-rovs 1) do
(loop for j from I to uner-of-colinns do
(&st (aref spread (+ 1 1) J) spread I J)
(send (aref spread i J) :set-changed-value t)
(cond ((equal 'formula

(send (aref spread £ J) :type))
(nsubstitute (list I J) (list (+ 1 i) J)

formula-list :test *equal)))))
(loop for j from 1 to nuuber-of-columns do

(aset (make-instance 'cell) spread number-of-rows J))
(print-spreadsheet-changed-it ems)))

(defun get-row-location-or-abort ()
OUsed during miove-row and copy-row. Returns a true if the user
clicks on a row. Allows Go-To function to be performed."

(send spreadsheet :st-itemi-type-alist row-move-copy)
(loop (setq user-input (send spreadsheet :any-tyi))

(cond ((not (listp user-input))
(return-from get-row-location-or-abort))

((equal :menu (car user-input))
(cond ((equal 'go-to (caddr(cadr user-input)))

(funcall 'go-to))))
((equal :typeout-execute (car user-input))

(cond ((equal 'mark (cadr user-input))
(return-from get-row-location-or-abort t))

((equal 'abort (cadr user-input))
(return-from get-row-location-or-abort)))))))

(defun move-row (moved-i notused)
"Moves row moved-i to a new location specified by the user.
Updates formula list."
(let ((moved-to-i))
(cond ((tv:menu-choose

'(("CONFIRE YOU WISH TO ROM A ROW" :no-select t)
("Yes" :value t :documentation

*Confirmn desire to move row")
("Now :value nil :documentation

"Abort row move")))
(Progn

(send interaction-vindow :select)
(send interaction-window :clear-screen)
(write-line "Click Left on Now Row Location or Type

any Character to Abort Move" interaction-window)
(cond ((get-row-location-or-abort)

110

(cond
((not (equal moved-i (setq moved-to-i

(car (caddr user-input)))))
(prmpn
(loop for j from 1 to number-of-columns do

(aset (aref spread moved-i J)
spread moved-to-i *J)

(send (aref spread moved-to-i J)
:set-changed-value t)

(cond ((equal 'formula (send (aref
spread moved-to-i J) :type))

(nsubstitute (list moved-to-i J)
(list moved-i J)
formula-list :test 'equal))))

(loop for j from 1 to number-of-columns do
(east (make-instance 'cell)

spread moved-i j))
(print-spreadsheet-changed- item)))))

(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers interaction-windov))))))

(defun copy-row (copied-i notused)
"Copies row copied-i to a new location. Update formula-list."
(let ((copied-to-i))
(cond ((tv:inenu-choose

'((-CONFIRM YOU WISH TO COPY A ROW" :no-select t)
("Yes" :value t :documentation

'Confirm desire to copy row")
("No" :value nil :documentation 'Abort row copy")))

(progn
(send interaction-window :select)
(send interaction-window :clear-screen)
(write-line 'Click Left on Location for a Copy of this

Row or Type any Character to Abort Copy"
interaction-window)

(cond ((Set-row-location-or-abort)
(cond ((not (equal copied-i (aetq copied-to-i

(car (caddr user-input)))))
(progn

(loop for j from 1 to
number-of-columns do

(send (aref spread copied-to-i J)
copy-cell copied-i J)

(cond ((equal 'formula (send (aref
spread copied-i J) :type))

(setq formula-list (cons

111

(list copied-to-i J)
formula-list)))))

(print- spreadsheet- changed-items)))))

(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers interaction-window))))))

(defun width (J notused)
"The user can specify a column width (for display purposes) for
the column he selected*
(let ((input-value))
(send interaction-window :select)
(send interaction-window :clear-screen)
(write-string "Column" interaction-window)
(format interaction-window I -A I

(send (aref column J) :letter))
(fresh- line interaction-window)
(write-string "Enter column width in decimal for this column:

interaction-window)
(tv: turn-on-sheet-blinkers interaction-window)
(setq input-value (read-from-string

(read-line interaction-window) nil nil))

(cond ((integerp input-value)
(cond ((plup input-value)

(send (aref column J) :set-width input-value))
(t (send interaction-window :beep))))

(t (send interaction-window :beep)))
(tv: turn-off-sheet-blinkers interaction-window)
;the entire spreadsheet needs to be redisplayed
(print- spreadsheet)
(send interaction-window :clear-screen)))

(defun insert-column (inserted-j notused)
"A blank column is inserted at column inserted-J. The rest are
moved to the right. The right-most column is removed. Column
widths are not changed."

(cond ((tv:menu-choose
'((-CONFIRM YOU WISH TO INSERT A COUMN" :no-select t)

(eYes" :value t :documentation
"Confirm desire to insert column")

("No" :valut nil :documentation
"Abort column insertion")))

(progn
(loop for i from 1 to number-of-rows do
(setq formula-list (delete (list I number-of-columns)

formula-list :test 'equal))

112

(loop for j from number-of-columns
downto (+ 1 inserted-J) do

(aset (aref spread i (- j 1)) spread I J)
(send (aref spread I J) :set-changed-value t)
(cond ((equal *formula

(send (aref spread I J) :type))
(nsubstitute (list i J) (list I (- J 1))

formula-list :test 'equal))))
(aset (make-instance 'cell) spread ± inserted-J))

(print-spreadsheet-changed-items)))))

(defun delete-column (deleted-J notused)
"The column at deleted-J is removed and the rest are moved
to the left. A blank column is moved in on the right.
Column widths are not changed.'
(cond ((tv:menu-choose

'(("CONFIRM YOU WISH TO DELETE A COLUMN" :no-select t)
("Yes" :value t :documentation

"Confirm desire to delete column")

("No" :value nil :documentation
"Abort column deletion")))

(progn
(loop for I from 1 to number-of-rows do

(setq formula-list (delete (list i deleted-J)
formula-list :test 'equal))

(loop for j from deleted-J to
(- number-of-columns 1) do

(aset (aref spread i (+ 1 J)) spread i J)
(send (aref spread I J) :set-changed-value t)
(cond ((equal 'formula

(send (aref spread i J) :type))
(nsubstitute (list i J) (list i (+ 1 J))

formula-list :test 'equal))))
(aset (make-instance 'cell)

spread i number-of-columns))
(print-spreadsheet-changed-items)))))

(defun get-column-location-or-abort ()
"Used during move-column and copy-column. Returns a true if the
user clicks on a column. Also allows the Go-To function to be
performed to access the entire spreadsheet"
(send spreadsheet :set-item-type-alist column-move-copy)
(loop (setq user-input (send spreadsheet :any-tyi))

(cond ((not (listp user-input))
(return-from get-column-location-or-abort))
((equal :menu (car user-input))
(cond ((equal 'go-to (caddr(cadr user-input)))

(funcall 'go-to))))

113

((equal :typeout-execute (car user- input))
(cond ((equal 'mark (cadr user-input))

(return-from get-column-location-or-abort t))
((equal 'abort (cadr user-input))
(return-from get-column-location-or-abort)))))))

(defun move-column (moved-J notused)
the user can move column moved-j to a new location.
(let ((moved-to-i))
(cond ((tv:menu-choose

-((-CONFIRM YOU WISH TO MOVE A COLUMN" :no-select t)
("Yes" :value t :documentation

"Confirm desire to move column*)
(No" :value nil :documentation

"Abort column move")))
(progn

(send interaction-vindow :select)
(send interaction-vindow :clear-screen)
(write-line "Click Left on New Column Location

or Type any Character to Abort Move"
interaction-window)

(cond ((get-column-location-or-abort)
(cond

((not (equal moved-J (setq moved-to-J
(car (caddr user-input)))))

(progn
(loop for i from 1 to number-of-rows do

(aset (aref spread i moved-J)

spread i moved-to-J)
(send (aref spread i moved-to-J)

:set-changed-value t)
(aset (make-instance 'cell) spread

i moved-J)
(cond ((equal 'formula (send (aref

spread i moved-to-J) :type))
(nsubstitute (list i moved-to-J)

(list i moved-J)
formula-list :test 'equal))))

(print-spreadsheet-changed-items)))))
(t (send interaction-window :beep)))

(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))))))

(defun copy-column (copied-J notused)
"The user can copy column copied-J to a new location."
(let ((copied-to-J))
(cond ((tv:menu-choose

114

'(("CONFIRM YOU WISH TO COPY A COU.MN" :no-select t)
40Yes" :value t :documentation

"Confirm desire to copy column")
("1o" :value nil :documentation

"Abort column copy")))
(prop

(send Interaction-window :select)
(send interaction-window :clear-screen)
(write-line

"Click Left on Location for a Copy of this Column
or Type any Character to Abort" interaction-window)

(cond ((get-column-location-or-abort)
(cond ((not (equal copied-J (setq copied-to-J

(car (caddr user-input)))))
(progn

(loop for i from 1 to
number-of-rows do

(send (aref spread i copied-to-J)
:copy-cell i copied-J)

(cond ((equal 'formula (send (aref
spread i copied-J) :type))

(setq formula-list (cons
(list i copied-to-J)
formula-list)))))

(print-spreadsheet-changed-items)))))
(t (send interaction-window :beep)))

(send spreadsheet : set-item-type-alist edit-list)
(send interaction-window : clear-screen)
(tv: turn-off-sheet-blinkers interaction-window))))))

(defun save-file ()
"The current spreadsheet is save as a user-specified file
in the local machine's Logic-calc directory"

(let ((output-pathname) (out-stream)
(filename-string) (output-value))

(write- string
"Enter the file name to store this worksheet in: 0
interaction-window)

(cond ((equal "" (setq filename-string
(remove #\sp (read-line interaction-window))))

(return-from save-file)))
(setq output-pathname (make-pathname :host "lm"

:directory "logic-calc "
:name filename-string
:type "logic-calc"))

(setq out-stream (open output-pathname :if-exists :new-version
:direction : output))

(format out-stream "-A-%" number-of-rows)

115

(format out-stream "-A-%* number-of-columns)
(format out-stream w-A-" first-display-row)
(format out-stream *-A-%* first-display-column)
(loop for j frou 1 to tumber-of-columns do

(format out-stream "-A-%" (send (aref column J) :width)))
;save items unique to each cell in ASCII form to allow
; easy file interface
(loop for i from 1 to number-of-rows do

(loop for j from 1 to number-of-columns do
(case (send (aref spread i J) :type)

(empty (format out-stream "E"))
(constant (progn

(format out-stream "C")
(format out-stream "-A"

(send (aref spread i J) :output-display))
(format out-stream "-A-%"

(send (aref spread i J) :bits))
(format out-stream "-A-%"

(send (aref spread i J) :value))))
(text (progn (format out-stream "T")

(format out-stream "-A-%"
(send (aref spread i J) :value))))

(formula (progn
(format out-stream "F")
(format out-stream "-A"

(send (aref spread i J) :output-display))
(format out-stream "-A"

(send (aref spread i J) :bits))
(print (send (aref spread i J) :formula)

out-stream)
;identify string values
(cond ((stringp (setq output-value

(send (aref spread i J) :value)))
(format out-stream "-%S"))
(t (format out-stream "-%N")))

(format out-stream "-A-%" output-value))))))
(close out-stream)
(write-string "File written - Press Return to Continue"
interaction-window)

(read-line interaction-window)))

(defun read-file ()
"The user can replace the current spreadsheet with one saved on
disk. All files are saved in the local machine's logic-calc
directory"
(let ((input-pathname) (in-stream) (filename-string))
(write-string "Enter the file name to read:

interaction-window)

I' - P- . F|* - . ~ -

, . wL¢. ,, ' 'h '.¢, - - . -- ' . --' -. . -" . . j. . . ,-. . . .• .* , :r

116

(cond ((equal "" (setq filename-string
(remove #\sp (read-line interaction-window))))

(return-from read-file)))
(setq input-pathname (make-pathname :host "lm"

:directory "logic-calc"
:name filename-string
:type "logic-calc"))

(send interaction-window :clear-screen)
(cond ((setq in-stream (open input-pathname :direction :input

if-does-not-exist nil))
(progn (write-string "STANDBY - Reading file:

interaction-window)
(write-line filename-string interaction-window)))

(t (progn (send interaction-window :beep)
(write-string "ERROR: File Not Found: "

interaction-window)
(write-line filename-string interaction-window)
(write-string "Press Return to Continue"

interaction-window)
(read-line interaction-window)
(return-from read-file))))

(setq formula-list nil)
(setq number-of-rows (read-from-string (read-line in-stream)))
(setq number-of-columns

(read-from-string (read-line in-stream)))
(setq first-display-row

(read-from-string (read-line in-stream)))
(setq first-display-column

(read-from-string (read-line in-stream)))
(loop for j from 1 to number-of-columns do

(send (aref column J) :set-width
(read-from-string (read-line in-stream))))

(loop for j from (+ 1 number-of-columns) to
max-number-of-columns do

(send (aref column J) :set-width 20))
(setq spread (make-array (list (+ 1 number-of-rows)

(+ 1 number-of-columns))))
;reconstruct each cell
(loop for i from 1 to number-of-rows do

(loop for j from 1 to number-of-columns do
(case (read-char in-stream)

(#\E (aset (make-instance 'cell) spread i J))
(#\C (aset (make-instance 'cell :type 'constant

:output-display (case (read-char in-stream)
(#\X 'X)
(#\B 'B))

117

:bits (read-from-string (read-line in-stream))
:value (read-from-string (read-line in-stream)))

spread i .j))
(#\T (aset (smke-instance 'cell :type 'text

:value (read-line in-stream)) spread i J))
(#\F (progn (aset (make-instance 'cell :type 'formula

:output-display (case (read-char in-stream)
(#\X 'X)
(#\B 'B))

:bits (read-from-string
(read-line in-stream))

:formula (read-from-string
(read-line in-stream))) spread i J)

(cond ((equal #\S (read-char in-stream))
(send (aref spread i J)

:set-value (read-line in-stream)))
(t (send (aref spread i J) :set-value

(read- from-string
(read-line in-stream)))))

(setq formula-list
(cons (list i J) formula-list)))))))

(close in-stream)
(print- spreadsheet)
(write-string "File retrieved - Press Return to Continue"

interaction-window)
(read-line interaction-window)))

(defun file ()
"The user can specify read or write operations."
(send interaction-window :select)
(send interaction-window :clear-screen)
(tv: turn-on-sheet-blinkers interaction-window)
(case (tv:menu-choose

'(("FILE OPERATIONS" :no-select t)
("Save File" :value save :documentation

"Save this spreadsheet")
("Read File" :value read :documentation

"Read previously saved file")))
(save (save-file))
(read (read-file)))

(send interaction-window :clear-screen)
(tv: turn-off-sheet-blinkers interaction-window))

(defun size ()
"The size of a spreadsheet can be changed with this function."
(let ((new-rows) (new-columns) (old-spread))
(send interaction-window :select)
(send interaction-window :clear-screen)

118

(tv: turn-on-sheet-blinkers interaction-window)
(format interaction-vindow "Current number of rows is -d"

number-of-rows)
(fresh- line interaction-window)
(format interaction-vindow "Current number of columns is -d"

number-of-coluns)
(fresh- line interaction-window)
(write-string "Enter the new number of rows:

interaction-window)
(setq new-rows (read-from-string

(read-line interaction-window) nil nil))
(write-string "Enter the new number of columns:

interaction-window)
(setq new-columns (read-from-string

(read-line interaction-window) nil nil))
(cond ((and (integerp new-rows)(plusp new-rows)

(plusp new-columns)(<- new-rows max-number-of-rows)
(integerp new-columns)
(<- new-columns max-number-of-columns))

;construct the new spreadsheet
(progn

(setq old-spread spread)
(setq spread (make-array (list (+ 1 new-rows)

(+ 1 new-columns))))
(loop for i from I to new-rows do

(loop for j from 1 to new-columns do
(cond

((and (<- i number-of-rows)
(<- J number-of-columns))

(aset (aref old-spread i J) spread i J))
(t (aset (make-instance 'cell) spread i j)))))

;remove non-existent cells from formula list
(loop for i from (+ 1 new-rows) to number-of-rows do

(loop for j from 1 to number-of-columns do
(setq formula-list (delete (list i i)

formula-list :test 'equal))))

(loop for j from (4+ 1 new-columns) to
number-of-columns do

(loop for i from 1 to number-of-rows do
(setq formula-list (delete (list I J)

formula-list :test 'equal))))

;reset global variables
(setq number-of-rows new-rows)
(setq number-of-columns new-columns)
(cond ((or (> first-display-row number-of-rows)

(> first-display-column number-of-columns))
(progn (setq first-display-row 1)

(setq first-display-column 1))))

119

(print-spreadaheet)))
(t (send interaction-window :beep)))

(send interaction-window :select)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-vindow)))

(defun go-to ()
"A new region can be viewed with this function."
(let ((input-value)(column-number)(row-number)

(original-x-position)(original-y-position))
(send interaction-window :select)
(fresh-line interaction-window)
(multiple-value-setq (original-x-position original-y-position)

(send interaction-window :read-cursorpos))
(write-string

"Enter cell name to be placed in upper left corner
of screen: " interaction-window)

(tv:turn-on-sheet-blinkers interaction-window)
(setq input-value (string-upcase (string-left-trim '(#\sp)

(read-line interaction-window))))
(multiple-value-setq (row-number column-number)

(row&col (read-from-string input-value)))
(cond ((and (integerp row-number) (plusp row-number)

(<- row-number number-of-rows)(plusp column-number)
(<- column-number number-of-columns))

(progn (setq first-display-row row-number)
(setq first-display-column column-number)
(print-spreadsheet)))

(t (send interaction-window :beep)))
(send interaction-window :select)
(send interaction-window

:set-cursorpos original-x-position original-y-position)
(send interaction-window :clear-oaf)
(tv:turn-off-sheet-blinkers interaction-window)))

(defun reset-recalc-recursive (x)
"All formula cells' recalculation flag must be reset before a
spreadsheet calculation."
(cond (x (progn (send (aref spread (car (car x))(cadr (car x)))

:set-recalc nil)
(reset-recalc-recursive (cdr x))))))

(defun calculate-recursive (x)
"Recalculates all formula cells in the formula list."
(cond (x (progn (evaluate-cell (car (car x))(cadr (car x)))

(calculate-recursive (cdr x))))))

(defun calc (&key no-redisplay)

120

*All formula calls within the spreadsheet are recalculated. If
the keyword no-redisplay Is set to true then the recalculation
will not display updated results. This is useful for testing
are several recaluations. The program operates faster.,

(reset-recaic- recursive formula- list)
(calculate -recursive formula- list)
(cond ((not no-redisplay) (print-spreadsheet-changed- item))))

(defun restart 0)
"allows user to restart edit mode from outside Logic Calc.0
;view upper-left portion of spreadsheet
(setq first-display-row 1)
(setq first-display-column 1)
;connect i-o buffers
(send spreadsheet * set- to-buffer program- jo-buffer)
(send interaction-window ': set- io-buffer program- io-buffer)
(send main-menu ':set-io-buffer program-io-buffer)
set the font for the spreadsheet
(send spreadsheet :set-font-map, (fillarray (make-array 26.)

(list fonts:tvfont)))
(send spreadsheet :set-itam-type-alist edit-list)
(send program-constraint-window :expose)
(send spreadsheet :expose)
(send interaction-window :expose)
(send main-menu :expose)
(print- spreadsheet)
;loop until exit is seen.
Call functions as appropriate response to user-inputs
(block main-program- ioop

(loop (setq user-input (send spreadsheet :list-tyi))
(cond ((equal :menu (car user-input))

(cond ((equal 'exit (caddr (cadr user-input)))
(return-from main-program-loop))

(t (funcall (caddr (cadr user-input))))))
((equal :typeout-execute (car user-input))
(funcall (cadr user-input) (car (caddr user-input))
(cadr (caddr user-input)))))))

(send spreadsheet :kill)
(send program-constraint-window :kill))

;The next four functions are designed to be Incorporated as
;entries into a cell's formula. They provide means of accessing
;other cell's contents.

(defun cell ("e x)
"Returns the contents of the cell specified by parameter x. The
referenced cell must first be evaluated by evaluate-cell.
Allows indefinite indirection by permitting an entry such as:

(Cell (Cell (Cell C12))).

JAA- -WII 1IIM1

121

All cells In the indirect chain except the last must have a
string value corresponding to a cell location"
(let ((Tow)(col))
(cond ((and (listp x) (equal 'cell (car x)))

(setq x (read-from-string (oval x)))))
(cond ((multiple-value-setq (row col) (row&col x))

(progn (evaluate-cell row col)
(send (aref spread row col) :value)))

(defun cell-offset ("e x j 1)
'Returns the contents of the cell specified by parameter x
offset by I rows and j columns. The referenced cell must first
be evaluated by evaluate-cell. No indirection allowed."
(let ((row)(col))
(uetq i (eval i))
(setq ,j (eval j))
(cond ((and (integerp i)(integerp J)

(multiple-value-setq (row col) (row&col x)))
(progn

(sotq row (+ row i))
(setq col (+ col J))
(cond ((and (-row nmber-of-rows)(plusp row)

('-col number-of-columns)(plusp col))
(progn (evaluate-cell row col)

(send (aref spread row col) :value)))
(t OER310O))))

(t "EROR))))

(defun cell-indirect ("e x)
'Returns the contents of the cell specified at cell-location x.
Provides a single level of indirection."
(let ((pointer)(pointer-row)(pointer-col)(row)(col))
(multiple-value-setq (pointer-row pointer-cal) (row&col x))
(cond ((and pointer-row pointer-cal)

(progn
(evaluate-cell pointer-row pointer-cal)
(setq pointer

(send (aref spread pointer-row pointer-col) :value))
(cond ((stringp pointer)

(progn (uetq pointer (read-from-string
(remove #\space pointer)))

(multiple-value-setq (row col)
(row&col pointer))

(cond ((and row col)

122

(prop
(evaluate-cell row col)
(send (aref spread row col)

:value)))
(t Emma))))

(t -MMO-))))
(t -kOR))))

(defun dual-rank-register ("e internal in out inval)
*the user must supply a UNIQUE name for the internal parameter.

A cell with this function entered acts as a dual-ranked
register. It's 'linval' is gated in whenever 'in' is true.
The output is maintained, however, until 'out' is true."
(let ((in (oval in))(out (oval out)))
(cond ((not (boundp internal))(set internal (list 0 0))))
(cond (in (cond (out (prop

(rplaca (oval internal) (oval inval))
(rplacd (oval internal)

(list (car (oval internal))))
(cadr (oval internal))))

(t (cadr (rplaca (oval internal)
(oval inval))))))

(out (cadr (rplacd (oval internal)
(list (car (oval internal))))))

(t (cadr (oval internal))))))

;The next function is designed to be used in a driver routine
; to put a value in a cell without changing its type.
(defun load-cell ("e x value)
"This procedure will load a value into the cell named by
paramter x, setting its changed value flag, and without
changing its formula."
(lot (M))

(cond ((multiple-value-setq (i J) (row&col x))
(pron

(send (aref spread I J) :set-value (oval value))
(send (aref spread I J) :set-changed-value t))))))

;the main program begins

;create cell objects for each indice in the array "spread"
(loop for I from I to number-of-rows do

(loop for j from 1 to number-of-columns do
(aset (make-instance 'cell) spread i j)))

;create column objects for all
possible columns in the array Ocolumn"

123

(loop for j from 1 to nax-number-of-columns do
(aset (make-instance 'column-flavor

letter (column-string J)) coum J))

;call restart to put in edit mod*
(restart)

AflDU 5: LOGIC CALC DIVING PMR0A1 FOR MICROPROCESSOR

;The following fuwtcious provide cell names

(Defun PC () (Cell A9)) ;Program Counter
(Defun IR () (Cell £12)) ;Instruction Register
(Defun ReSA (Cell A15)) ;A Register
(Defun RegR ((Cell A15)) ;S Register
(Defun RegI ((Cell £21)) ;X Register
(Defun RegY ()(Cell A24)) ;Y Register
(Defun SP ()(Cell £27)) ;Stack Pointer
(Defun RegS ()(Cell £30)) ;Status Register
(Defun 1DB ()(Cell 12)) ;Internal Data Bus
(Defun MDR ((Cell 36)) ;Newory Data Register
(Defun MAR ()(Cell 19)) ;Keuory Address Register
(Defun DI ((Cell 312)) ;Data Bus Interface Register
(Defun IDS ((Cell 515)) EZxternal Data Bus
(Defun USB 0 (Cell 318)) ;Internal Data Bus
(Defun Adder 0) (Cell C12)) ;adder/subtracter

;The following functions test the state of the clock, returning
;a value of true If the clock Is in the corresponding state.

(Defun Rising () (Zerop (Cell A2)))
(Defun High () (E qual1 (Cell A2) 1))
(Defun Falling () (Equal (Cell £2) 2))
(Defun Low () (Equal (Cell £2) 3))

The following functions test signals, returning a value of true
;if the corresponding signal is active.

(Defun Reset ()(Zerop (Cell £6)))
(Defun MeuR ()(Zerop (Cell 321)))
(Defun MeW ()(Zerop (Cell 524)))

;The following functions test up to 5 bits in the Micro-
;instruction Register, returning a true value if all bits are
;set to 1 for Kicrobitp or all bits set to zero for Kicrobitn.

(Defun Microbitp (A Goptional B C D 3)
(And (Cond (3 (Logbitp 3 (Cell D2)))(T))

(Cond (D (Logbitp D (Cell D2)))(T))
(Cond (C (Logbitp C (Cell D2)))(T))
(Cond (S (Logbitp 9 (Cell D2)))(T))
(Logbitp A (Cell D2))))

124

125

(Defun Nicrobitn (A W0ptional 3 C D Z)
(Not(Or (Cond (Z (Logbitp I (Cell D2))))

(Cond (D (Logbitp D (Coil D2))))
(Cond (C (l~gbitp C (Coil D2))))
(Cond (B (logbitp A (Cell D2))))
(Logbitp A (Coll D2)))))

(Defun Risingl&Iicrobitp (A hOptional A C D K)
(And (Cond (K (Logbitp 9 (Cell D2)))(T))

(Cond (D (Logbitp D (Coll D2)))(T))
(Cond (C (Logbitp C (Cell D2)))(T))
(Cond (B (Logbitp 5 (Coll D2)))(T))
(Logbitp A (Cell D2))
(Zerop (Cell A2))))

;The following function allows the user to select between
; three clocking modes: Full Speed, Fixed Number of Cycles,
;or Single Cycles. For each cycle, the spreadsheet is
;recalculated four times. If Full Speed operations Is

; selected, interim results are not displayed.
; The variable Cycle-Global is used to keep track of the
; mode and the numbar of cycles if in the Fixed Number of
; Cycles Mode.

(Setq Cycle-Global 0)
(Defura Cycle ()
(Cond ((Plusp Cycle-Global)

(Progn (Setq Cycle-Global (- Cycle-Global 1))
(Calc :No-Redisplay Nil)
(Calc :No-Redisplay Nil)
(Calc :No-Redisplay Nil)
(Calc))

((Minusp Cycle-Global)
(Progn (Calc :No-Redisplay T)

(Calc :No-Redisplay T)
(Calc :No-Redisplay T)
(Calc))

(T (Propn
(Setq Cycle-Global

(Case (Tv Menu-Choose
'((Cycle Menu' :No-Select T)

(*Full Speed" :Value -1)
("One Cycle' :Value Nil)
('Set Numnber Of Cycles' :Value 1)))

126

(Nil 0)
(I (Progn..

(Tv:Turn-On-Sheet-Blinkers Interaction-Window)
(Write-String "Enter Number Of Cycles:

Interaction-Window)
((Read-From-String

(Read-Line Interaction-Window)) 1)))))
(Tv: Turn-Off-Sheet-Blinkers Interaction-Window)
(Send Interaction-Window : Clear- Screen)
(Caic) (Calc) (Caic) (Caic)))))

;The automatic simulation begins here

(Print-Spreadsheet) ; display the spreadsheet
(Load-Cell A6 0) ; activate a reset signal
(Load-Call A2 0) ; initialize the clock to a rising edge
(Load-Cell A36 0) ; initialize cycle counter cell
(Calc)
(Load-Cell A6 1) ; clear reset signal

;begin fetch-execute cycle

(Block Main-Loop
(Loop Do

(Load-Cell D6 0) ;microcode address for fetch
(Cycle)
(Case (IR) ;microcode addresses for execute

(00 (Return-From Main-Loop)) ;exit for HALT
(01 (Progn (Load-Cell D6 0l)(Cycle)))
(02 (Propn (Load-Cell D6 02)(Cycle)))
(03 (Progn (Load-Cell D6 03)(Cycle)))
(04 (Propn (Load-Cell D6 04)(Cycle)))
(05 (Progn (Load-Cell D6 05)(Cycle)))
(06 (?rogn (Load-Cell D6 06)(Cycle)

(Load-Cell D6 07)(Cycle)))
(07 (Progn (Load-Cell D6 06)(Cycle)

(Load-Cell D6 08)(Cycle)))
(08 (Propn (Load-Cell D6 06) (Cycle)

(Load-Cell D6 09)(Cycle)))
(09 (Propn (Load-Cell D6 06)(Cycle)

(Load-Cell D6 10)(Cycle)))
(10 (Propn (Load-Cell D6 06)(Cycle)

(Load-Cell D)6 ll)(Cycle)))
(11 (Propn (Load-Cell D)6 12)(Cycle)))
(12 (Propn (Load-Cell D)6 13)(Cycle)))

127

(13 (Progn (Load-Cell D6 14)(Cycle)))
(14 (Progn (Load-Cell D6 l5)(Cycle)))
(15 (Progn (Load-Cell D6 06) (Cycle)

(Load-Cell D6 16)(Cycle)))
(16 (Propi (Load-Call D6 06)(Cycle)

(Load-Cell D6 17)(Cycle)))
(17 (Propi (Load-Cell D6 06)(Cycle)

(Load-Cell D6 l8)(Cycle)))
(18 (Progi (Load-Cell D6 06)(Cycle)

(Load-Cell D6 19)(Cycle)))
(19 (Progn (Load-Cell D6 06)(Cycle)

(Load-Cell D6 20)(Cycle)))
(20 (Progn (Load-Cell D6 21)(Cycle)))
(21 (Propi (Load-Cell D6 22)(Cycle)))
(22 (Progn (Load-Cell D6 23)(Cycle)))
(23 (Progn (Load-Cell D6 24)(Cycle)))
(24 (Progn (Load-Cell D6 25)(Cycle)

(Load-Cell D6 26)(Cycle)))
(25 (Progn (Load-Cell D6 25)(Cycle)

(Load-Cell D6 27)(Cycle)))
(26 (Progn (Load-Cell D6 25) (Cycle)

(Load-Cell D6 28)(Cycle)))
(27 (Progn (Load-Cell D6 25)(Cycle)

(Load-Cell D6 29)(Cycle)))
(28 (Progn (Load-Cell D6 30)(Cycle)))
(29 (Progn (Load-Cell D6 31)(Cycle)))
(30 (Progn (Load-Cell D6 32)(Cycle)))
(31 (Progn (Load-Cell D6 33)(Cycle)))
(32 (Progn (Load-Cell D6 34)(Cycle)

(Load-Cell D6 35)(Cycle)
(Load-Cell D6 36)(Cycle)))

(33 (Progn (Load-Cell D6 37)(Cycle)
(Load-Cell D6 35)(Cycle)
(Load-Cell D6 36)(Cycle)))

(34 (Progn (Load-Cell D6 34)(Cycle)
(Load-Cell D6 36)(Cycle)))

(35 (Progn (Load-Cell D6 37)(Cycle)
(Load-Cell D6 36)(Cycle)))

(36 (Progn (Load-Cell D6 38)(Cycle)
(Load-Cell D6 39)(Cycle)))

(37 (Progn (Load-Cell D6 40) (Cycle)
(Load-Cell D6 39)(Cycle)))

(38 (Progn (Load-Cell D6 41)(Cycle)))
(39 (Progn (Load-Cell D6 42)(Cycle)))
(40 (Progn (Load-Cell D6 43)(Cycle)))
(41 (Progn (Load-Cell D6 44)(Cycle)))
(42 (Progn (Load-Cell D6 25)(Cycle)

(Load-Cell D6 45) (Cycle)

VV W r 0,~. d- ~ . ' ~ .* r.*-

128

(Load-Cell D6 46) (Cycle)
(Load-Cell D6 47)(Cycle)))

(43 (ftogn.(Load-Cell D6 48) (Cycle)
(Load-Cell D6 47)(Cycle)))

(4(Progn (Load-Cell D6 06) (Cycle)
(Load-Cell D6 47) (Cycle)))

(45 (Progn (Load-Cell D6 06) (Cycle)
(Cond ((Logbitp, 0 (Regs))

(Progn (Load-Cell D6 47)
(cycle))))

(46 (Progn (Load-Cell D6 06) (Cycle)
(Cond ((Logbitp 1 (Regs))

(Progn (Load-Cell D6 47)
(Cycle)))

(47 (Progn (Load-Cell D6 06) (Cycle)
(Cond ((Logbitp 2 (Regs))

(Progn (Load-Cell D6 47)
(cycle))))))

(Restart) ;return to edit mode displaying final results

BIBLIOGRAPHY

[Il American National Standards Institute. "IEEE Standard
for Binary Floating-Point Arithmetic," Std. 754, New
York, 1985.

[2] A. Barna and D. I. Porat, Introduction to Digital
Techniaues, 2nd ed., New York: John Wiley & Sons, 1987.

[3] P. H. Chirlian, Analysis nd Design 2f Integrated
Circuits, New York: Harper & Row Publishers, 1987.

[4] H. G. Cragon, "Simulation of Processor Arrays Using
Spreadsheet Programming," Unpublished Manuscript,
University of Texas at Austin, 1985.

[5] Explorer Lisp Reference, Austin: Texas Instruments Inc.,
1985.

[6] Explorer Window System Reference, Austin: Texas
Instruments Inc., 1985.

[7] Explorer ZMACS Editor Reference, Austin: Texas
Instruments Inc., 1985.

[8] J. L. Haynes, "Circuit Design with Lotus 1-2-3," in y ,
Vol. 10, pp. 143-156, Fall 1985.

[9] G. J. Lipovski, MicrocomDuter Inte; Principles nd
Practice, Lexington, MA: Lexington Books, 1986.

[10] Lotus Reference Manual Release 2, Cambridge: Lotus
Development Corporation, 1985.

[11] G. M. Robinson, "Technique Exploits Spreadsheet Programs
for Solving Complex Engineering Problems," in Desi
News, Vol. 42, pp. 121-123, October 20, 1986.

[12] G. L. Steele Jr., Comon LiAL. Th& Lang a a , Burlington
MA: Digital Press, 1984.

[13] I. Unwala, "A Novel Environment for Design and Simulation
of Digital Systems Architecture," Unpublished Master's
Thesis, University of Texas at Austin, 1986.

129

130

[14] T. J. Wagner and G. J. Lipovski, Fundamentals 21
Microcom~uter 'Programmning, New York: MacMillan
Publishing, 1904.

[15] J. Walden, Fil Foxuat, New York: John Wiley & Sons,
1986.

[16) P. H. Winston and B. K. P. Horn, Lin, 2nd ed., Reading,
HA: Addison-Wesley Publishing, 1984.

VITA

Glenn David Rosenberger was born in Johnstown,

Pennsylvania, on January 4, 1959, the son of Walter Francis

Rosenberger and Frances Elvira Rosenberger. He completed Ferndale

Area High School in 1976. He graduated from the United States Air

Force Academy in May, 1980, and was awarded a Bachelor of Science

in Electrical Engineering. He completed United States Air Force

Undergraduate Pilot Training at Williams Air Force Base, Arizona,

in August, 1981. He completed RF-4C training at Shaw Air Force

Base in May 1982. During the following years, he served as an

aircraft commander, an instructor pilot, and a ground school

instructor for the RF-4C Phantom reconnaissance fighter at

Bergstrom Air Force Base, Texas. In September, 1985, he entered

the Graduate School of the University of Texas. His research

interests include Computer Architecture, Computer Aided Design,

and Computer Arithmetic. He is a member of Etta Kappa Nu and Tau

Beta Pi.

Permanent address: 112 Habicht Street

Johnstown, Pennsylvania 15906

This thesis was typed by Glenn David Rosenberger.

131

%

